SPACE WARS3D
CIS695: Project 
WINTER 2005
Mark Maratea

25 April 2005
TABLE OF CONTENTS

	
	TAB
	Page

	Introduction

	1
	3

	Requirements Document
	2
	4

	Design Document
	3
	21

	Software Quality Assurance
	5
	38

	Test Plan
	6
	47

	Future Maintenance Suggestions
	7
	54

	Appendix A – User Manual
	9
	55

	Appendix B - Code
	10
	59


INTRODUCTION

Welcome to SPACE WARS3D! Join other pilots in a galactic game of death and destruction.  Wage war alone or join your friends in this high powered, 3D space shooter.   

SOFTWARE REQUIREMENTS SPECIFICATION
1.0 Introduction
This section provides an overview of the entire requirement document. This document describes all data, functional and behavioral requirements for software.

1.1 Goals and objectives

The goal of this project is to create a game engine framework for a multiplayer networked game. The game will incorporate Direct 9.0c 3D graphics, meshed based 3D objects, artificial intelligent (AI) opponents, TCP and UDP networking, and DirectX sound effects.
Upon startup, players will be prompted with two game options: creating an instance as a server and playing a game or connecting to an already running server for a game. One player will initialize a game by selecting “start a new game” and creating a server instance. That player will then provide other players with the server IP address.  Players will join a game by joining an existing server instance and entering the IP address of the game server.

 1.2 Statement of scope

A computer game engine must contain a rendering method, user input handling, sound processing, network engine, physics engine, and an object manager.

Each game object must implement an Update and Draw method. The Update method is user to control the movement and physics calls. The Draw method set the object’s texture’s and materials as current for the engine and then called the mesh drawsubset command or the draw primitive command in the case on 2D objects such as text.

The rendering engine resides within the game engine class and must be able to poll the object manager and call each object’s draw function. The draw function must contain a draw mesh command or a draw primitive command, depending on the object type.

The physics engine resides within the game engine class and must be able to poll the object manager and call each object’s update function. The physics engine also checks for all collisions, moves objects, and assigns damage. 

The sound engine class must be instantiated by the game engine. During instantiation, the sound engine must create a new sound device (DirectX) and create two sound buffers. The sound engine class holds the methods for each sound effect, for example weapons fire or ship destruction.
The user input will be handled via eventhandler’s within the player class or the game engine, depending on the type of input. Game level inputs (rendering changes from texture to wireframe and quitting) is handled by the game engine. Player specific inputs (movement, firing, etc) is done within the player class. 
The player class is the base class used for the local player (the one hosting the game) and the remote players (those who are connecting via the networking engine.) The player class creates the eventhandlers for the user specific input, instantiate the specific 3D object class that will be the player’s avatar (eg. the ship class), handle’s the mouse input via eventhandlers, draws the player’s name. 
The player class draw function must set the world transforms to transform the object from the object’s local coordinates to the world coordinate of the game engine. The draw function then calls the object specific draw function with in the object class.  The player class update function applies the user input and the game engine elapsed time and updates the objects position in space. 

The AI class is similar to the player class except that the update methods handle the AI movement and actions calls the processes the AI main logic loop (state machine.) 

The object handler resides within the game engine and must have access to the player class and AI class objects instantiated by the game engine.

 1.3 Software context
This game fits into the standard rubric of 3D space shooters. The 3D space simulation market is fairly deep, covering everything from the classic wing commander games to the very modern X2. 
 1.4 Major constraints

1.4.1 Networked Data Transfer:

The game passes packets via a LAN system.  If the network hardware is not capable of passing the data at high speeds, or the network has too much traffic, the game play will suffer.



1.4.2 Hardware Constraints:

The server within the game system must have enough power to serve multiple clients.  Without this, the client packet will not be returned to the client without noticing a lag in game play speed.

1.4.3 OS Constraints:            

The clients and server must have a MS based operating system.  Windows 98 or higher is preferred.  The client and server must also have the .NET 1.1 framework also installed
2.0 Usage scenario
 2.1 User profiles
Primary user: Host. Starts the original game and allows other players to join 

Secondary user: Player. Joins existing games

 2.2 Use-cases
a. Use Cases

	Use Case:
	Start New Game

	Actors:
	Player

	Purpose:
	Start a new game

	Overview:
	The Player tells the system that he wants to start a game created by an Initiator. The game is then created and the Player can start to play.

	Type:
	Primary and essential

	Use Case:
	Play Game

	Actors:
	Player, Other players, AI

	Purpose:
	Kill things

	Overview:
	The actors fly around and kill each other, scoring points left and right. 

	Type:
	Primary and essential


	Use Case:
	Join a Multiplayer Game

	Actors:
	Player

	Purpose:
	Join an existing game

	Overview:
	The Player tells the system that he wants to join an existing game and provides the system with an IP of the game server.

	Type:
	Primary and essential


	Use Case:
	Single Player Game

	Actors:
	Player

	Purpose:
	Start a single player game

	Overview:
	This is the same as hosting a multiplayer game. The user selects new and then host but does not have any other players join. 

	Type:
	Primary and essential

	
	

	Use Case:
	Host Game

	Actors:
	Player

	Purpose:
	Host a multiplayer game

	Overview:
	The Player tells the system that he wants to initiate a multiplayer game. The system starts the multiplayer game and enters the player in a game environment

	Type:
	Primary and essential


2.3 Special usage considerations
Because players will end up playing on multiple servers, we will need to store an encrypted copy of each players total information set locally.

3.0 Data Model and Description
     3.1 Data Description
3.1.1 Data objects

Game Engine:  This data object represents the core of the game engine, also referred to as the engine.

Bullet:  Object with direction and velocity, fired by a ship, used to do damage to other ships.

Ship:  This represents a person who is playing the game.  The player is displayed on the screen as a ship.  Each ship is an object within the game system.

AI Ship:  And AI object controlled by the AI class. Each ship is an object within the game system.

Player:  This object is the instance that connects to the server via the networking object or as the local host .  It draws the ship, fires the bullets, contains the player name, armor, and location. 

Sounds:  This object creates a connection to the directx sound devices. It contains methods to load and play a variety of sound effects.

3.1.2 Relationships


[image: image1]
 

3.1.3 Complete data model 

[image: image2]
Game Object Model


[image: image3]
Symbol Key for Game Object Model

 3.1.4 Data dictionary
	Name
	Game Engine

	Alias
	DO1

	Where used/how used
	Starts the program, loads all screens, holds all collections, instantiates all other engines. Handles inputs and events.

	Description
	The main event loop. Hooks to the DirectX framework.

	Name
	Bullet

	Alias
	DO2

	Where used/how used
	Fired by player and AI
Input from keyboard input by client key press or by AI routines
Contained by game engine. Updated and drawn by game engine routines.

	Description
	Bullet is fired by the actors and does damage to other ships.

	Name
	Ship

	Alias
	DO3

	Where used/how used
	Created by each instance of the player or AI actors. 
Drawn and updated by the game engine main loop.

	Description
	3D Mesh object drawn on the screen.

	Name
	Sound

	Alias
	DO4

	Where used/how used
	Created by the game main event loop.
Fired by the update loop when a sound is needed (when a ship is hit.)
Fired when the firing event handler is fired by the player or AI.

	Description
	Plays sound effects for the game.


	Name
	Player

	Alias
	DO5

	Where used/how used
	Created by the game engine.
Event handler for user input

Used to draw the ship object with matrix world transforms

Used to update the ship position by movement.

	Description
	Player object links the engine to the mesh and handles user input.

	Name
	AI

	Alias
	DO6

	Where used/how used
	Created by the game engine.
Update method contains AI logic and move the ship.

Used to draw ship object and transforms to world coordinates.

Combat routine fires bullets.

	Description
	AI object links the game engine and processes the AI routines.


4.0 Functional Model and Description
 4.1 Functional Model Diagram

DIAGRAM O DFD


[image: image4]
Game Engine
The client object contains a number of functions that are described as follows:


OnFrameMove


This is the frame update method called by the framework

OnFrameRender
This is the draw method called by the frameworld

Load World
Upon start up, this loads the skybox, the level’s dose of AI players, the local player, and starts the particle effects engine.


OnFired
Trigged by the AI or Player firing calls. Launches a bullet from the calling units location.


Get User Input

The player input is captured by the MainLoop and based to the correct eventhandler.


Main Loop

This is the loop within the client that calls all the functions within the client object.  This loop constantly runs to call all the necessary functions within the client environment. This is controlled by the DirectX framework.
INPUTS:

The Game Engine inputs come from the player inputs and the remote player game engine inputs.
OUTPUTS:   

The screen takes the data produced from the server object and is processed to give the display information.

PERFORMANCE:  

The function is limited by the server and the networking communication between the Host and remote objects. Since it is server based, the multiple client input could be too much for the server to handle.  Client-Server testing is difficult, so reduced performance is likely and will be difficult to debug.

Player Object                            

The player object contains a number of functions that are described as follows:

· Draw
Transforms the players local coordinates to the World Coordinates and then calls the ship object draw function.

· Update

Processes the user input from the keydown and moves/rotates the ship as needed. Updates the ship’s position and rotation.

· Player Constructor

Creates the instance of the player, creates a ship (loads the mesh file) 

· RaiseFireEvent

Called the mainloop Fire event, fires a bullet, and adds the bullet to the bullet list.

· OnKeyDown

Processes the key events and sets the flags for the update cycle.

Inputs: 

The data input comes from the user.

Outputs: 

The output is the draw event – a mesh, texture, and materials to be shown on the screen.

AI Object                            

The AI object contains a number of functions that are described as follows:

· Draw

Transforms the AIs local coordinates to the World Coordinates and then calls the ship object draw function.

· Update

Runs the AI main logic loop. Processes the AI logic and moves the ship and fires as needed.

· AI Constructor

Creates the instance of the AI, creates a ship (loads the mesh file) 

· RaiseFireEvent

Called the mainloop Fire event, fires a bullet, and adds the bullet to the bullet list.

Inputs: 

The data input comes the game engine in the form the object manager used by the AI for scanning.

Outputs: 

The output is the draw event – a mesh, texture, and materials to be shown on the screen.

Bullet Object                            

The bullet object contains a number of functions that are described as follows:

· Draw

Transforms the bullets local coordinates to the World Coordinates and then calls the ship object draw function.

· Update

Processes the bullets location based on the position, speed, rotation, and elapsed time. Performs the Hit Test.

· Bullet Constructor

Creates the instance of the bullet, creates a bullet (loads the mesh file) 

Inputs: 

The data input comes from the game engine in the form of the elapsed time and the information for the Hit Test.

Outputs: 

The output is the draw event – a mesh, texture, and materials to be shown on the screen. The out of the Hit Test tells if an game object has been hit.

Sound Object                            

The sound object contains a number of functions that are described as follows:

· Fire Sound

Makes a noise when a weapon is fired.

· Explosion Sound

Makes a noise when a ship is hit.

Inputs: 

N/A.

Outputs: 

Sound from the speakers.

4.2 Software Interface Description

4.2.1 External machine interfaces

Networking router:

The router is needed for the communication between client and server.  The router passes the packets between client and server machines via IP address information.  The communication methods used are TCP and UDP.  The router can be connected via Ethernet cable or via wireless communication methods.
4.2.2 External system interfaces
                     Operating System:

The Operating system is linked heavily with the software. A strong interface environment is created to properly communicate with the operating system and to better detect and identify problems.  Often the user may blame the application when the operating system tells a different story as to the cause of computer failure.

Currently the supported interfaces include Windows versions 2000 or higher.  The .NET 1.1 Framework must be installed.

The DirectX 9.0c API must be installed. 

Network Interface:

The game needs a networked interface in order for the multi-player functionality.  The network must have the ability to pass TCP and UPD packets with a static IP address during the game session.

                      Hardware:

A PC with a Microsoft Windows 2000+ operating system is necessary for game play.  The PC needs a monitor with 800 x 600 resolution, at a minimum.   The computer also needs a keyboard and a Network Interface Connection for the networking capability for the multi-player game.

                     Input Devices:

A keyboard is necessary for the user input and user interaction throughout the game play.  A Network Interface Card is necessary for communication between the clients and the server.

Output Devices:

The computer must have a monitor in order to give the user the ability to see what is happening in game play.  A Network Interface Card is necessary for communication between the clients and the server.

4.2.3 Human interface

The only human interfaces are the ones involving the game player. 

A system maintenance interface was considered, but not designed for this application.  The website that will be hosting this application, simply shuts off the computer applications until repair can be done, permanent onsite staff specific to the application are not allowed.

4.3 Control flow description.







Control Flow Diagram

5.0 Behavioral Model and Description
The software that is being designed and developed is a multiplayer game that is for entertainment and enjoyment purposes.  The game can be played in a single player mode for single player game vs. the computer, multiple player mode with the user hosting the game, or multiple player mode connecting to a server.

 5.1 Description for software behavior
5.1.1 Events
User starts single player game:

· User selects Host game on start page

· User plays game

· Game ends 

· User shuts off software

User joins multiplayer game:

· User selects Join game

· Users enters IP address of game to join

· User joins in game 
· User plays until he/she no longer wants to, can leave server running for others, or alerts others that server will be shut down.

· User shuts off software

 5.1.2 States
· Start up mode

· User executes software and chooses between Hosting or Joining a  game

· Entering user information

· User enters user Name and the 
· Join Game 

· Enter the IP of the server you wish to join

· Play game

· User will play game with computer or other networked players

· End of game

· Users statistics may be displayed, game status shown

· Quit game

· User selects the option to quit the game program

 5.2 State Transition Diagrams










 5.3 Control specification (CSPEC)
The software has controls over the following items:

· The number of players

· The time frame within the game

· The motion and game play of computer controlled game pieces; other computer controlled players, random items within game system; 

· Data flow from client to server, server to client

· Level of difficulty

· Speed, pace of game

6.0 Restrictions, Limitations, and Constraints
Restrictions:

· Users must have DirectX 9.0c installed.

· Users must have a Windows 2000+ operating system.

· Users must have a ping time to server below 350.

· Users must have networking capability

Limitations:

· Number of connected users is determined by server specifications

· Bandwidth must be high enough for data packet transfer

7.0 Validation Criteria
 7.1 Classes of tests

There are three classes of error we will be focusing on: game logic, GUI, networking.

Game logic errors occur when the main event result is not what is intended. An example would be missed shots that should have hit or false-positive hits, speed errors, lack of ship collision detection, etc.

Graphical user interface (GUI) errors occur when the GUI shows incorrect images or data, or when the wrong command is passed to the server.

Networking errors occur when the data packets a dropped, become corrupted, are not sent at all, or get passed to the wrong player. Additionally, the server must gracefully handle the loss of a player (carrier drop.)  There might not be a one-to-one method of data passing, causing the client or the server to try to process more information than it has been programmed for to handle.

Software Design

1.0 Introduction
.

1.1 Goals and objectives

The goal of this project is to create a game engine framework for a multiplayer networked game. The game will incorporate Direct 9.0c 3D graphics, meshed based 3D objects, artificial intelligent (AI) opponents, TCP and UDP networking, and DirectX sound effects.
Upon startup, players will be prompted with two game options: creating an instance as a server and playing a game or connecting to an already running server for a game. One player will initialize a game by selecting “start a new game” and creating a server instance. That player will then provide other players with the server IP address.  Players will join a game by joining an existing server instance and entering the IP address of the game server.

 1.2 Statement of scope

A computer game engine must contain a rendering method, user input handling, sound processing, network engine, physics engine, and an object manager.

Each game object must implement an Update and Draw method. The Update method is user to control the movement and physics calls. The Draw method set the object’s texture’s and materials as current for the engine and then called the mesh drawsubset command or the draw primitive command in the case on 2D objects such as text.

The rendering engine resides within the game engine class and must be able to poll the object manager and call each object’s draw function. The draw function must contain a draw mesh command or a draw primitive command, depending on the object type.

The physics engine resides within the game engine class and must be able to poll the object manager and call each object’s update function. The physics engine also checks for all collisions, moves objects, and assigns damage. 

The sound engine class must be instantiated by the game engine. During instantiation, the sound engine must create a new sound device (DirectX) and create two sound buffers. The sound engine class holds the methods for each sound effect, for example weapons fire or ship destruction.

The user input will be handled via eventhandler’s within the player class or the game engine, depending on the type of input. Game level inputs (rendering changes from texture to wireframe and quitting) is handled by the game engine. Player specific inputs (movement, firing, etc) is done within the player class. 

The player class is the base class used for the local player (the one hosting the game) and the remote players (those who are connecting via the networking engine.) The player class creates the eventhandlers for the user specific input, instantiate the specific 3D object class that will be the player’s avatar (eg. the ship class), handle’s the mouse input via event handlers, draws the player’s name. 

The player class draw function must set the world transforms to transform the object from the object’s local coordinates to the world coordinate of the game engine. The draw function then calls the object specific draw function with in the object class.  The player class update function applies the user input and the game engine elapsed time and updates the objects position in space. 

The AI class is similar to the player class except that the update methods handle the AI movement and actions calls the processes the AI main logic loop (state machine.) 

The object handler resides within the game engine and must have access to the player class and AI class objects instantiated by the game engine.


1.3 Software context

We are looking to provide an entertaining networked multiplayer game for a client.  There is much leeway given as to the particular game that is chosen. The target user is a person with a networking capable environment and an interest in competing with others in a interactive electronic arena.  

1.4 Major constraints
1.4.1 Networked Data Transfer:

The game passes packets via a LAN system.  If the network hardware is not capable of passing the data at high speeds, or the network has too much traffic, the game play will suffer.



1.4.2 Hardware Constraints:

The server within the game system must have enough power to serve multiple clients.  Without this, the client packet will not be returned to the client without noticing a lag in game play speed.

1.4.3 OS Constraints:            

The clients and server must have a MS based operating system.  Windows 2000 or higher is preferred.  The client and server must also have the .NET 1.1 framework also installed. DirectX 9.0c installed.
2.0 Data design

A description of all data structures including internal, global, and temporary data structures.

2.1 Internal software data structure

Bullet
Mesh – drawing style for the projectile

Damage – Amount of damage bullet does
Time to Live – Time before it disappears
Ship

Mesh file – ship graphics file

Draw method – draws the mesh

Materials – mesh info on the material properties

Position (x,y,z)

Rotation (float)

Texture

RotationMatrix

ShipRadius – bounding sphere radius

Ship Center – vector3 center

Player


Ship

Name

Rotation 

Armor
Max Speed

Max Rotation

Movement States (isForward, Back, RotL, RotR)

Mouse Position (x,y)

Camera

EyeVector – Vector3

LookAtVector – Vector3

UpVector – Vector3

FieldofView, aspect ratio, near and far clipping planes

Projection Matrix Transform

2.2 Global data structure

Local Player – instance of player

PlayerList – Arraylist of remote players

AIList – ArrayList of AI players

Bullet List – ArrayList of player bullets

AIBullets – ArrayList of AI bullets

Device – instance of DirectX rendering device

Elapsed Time

Time

2.3 Temporary data structure

None

.

2.4 Database description

None

3.0 Architectural and component-level design
The software created for this project will be created within an object oriented environment.  This will give the system portability and flexibility along with the many other benefits that come with object oriented development and programming.  

3.1 Program Structure
The major pieces that are included within this project environment are:

· The Player

· The Ship object

· The Bullet Object

· Game Engine Object

· The AI Object

These pieces are the objects that make up the majority of the software developed.  The basic structure of the game in pseudo-code is as follows:

Main Event()

{


Find Level


Load World()


Update_Frame()

Frame_Render()



Render_Game_Scene()


End Level (go to find level)


Game_Exit()

}

The graphical representation is as follows:
3.1.1 Architecture diagram

[image: image5]
Architecture Diagram

3.2.1 Description for the Main Event Loop Component
3.2.1.1 Processing narrative (PSPEC) for component
The Main Event Loop is the highest level structure within the software developed.  It contains the function calls for each piece of the game.  Depending on the state of the game, the loop enters procedures to manipulate the images/graphics drawn on the screen, send/receive packets from networking, process AI directives, or show the direction of the ship within the game play screen.

3.2.1.2 Component interface description.
There are no inputs for the Main Event Loop and it returns/outputs an error if one is created.

3.2.1.3 Component processing detail
3.2.3.1 Interface description

Initialize()

- initializes variables, makes necessary network connections

Menu_Settings()

- displays, stores values from settings screen

Host Game()

- creates the connection(s) and socket(s) between the client(s) and the server, allows for networking data/packet transfer


Join Game()

- starts game play, displays game screen

Run_Game()

- processes user events, keyboard input, outputs items to    display based on user input


Restart_Game()

- initializes game variables, garbage collection, sets game status to run_game

Close_Connection()

- closes the connection and sockets between the client(s) and the server

Game_Exit()

- ends game play, closes network connections, garbage collection

3.2.1.3.2 Algorithmic model (e.g., PDL)

Procedure Main Event loop:

Returns error on error with Main Event call error

TYPE game_state IS Integer

Main Event()

{

while game_state IS NOT EQUAL TO GAME_EXIT

{


case GAME_INIT call


Initialize()

case Host Game call

Start Game()


case Join Game call



Get IP ()

Start_Game()


case GAME_RUN call

Run_Game()

case GAME_RESTART call


Restart_Game()

case DISCONNECT_SOCKET()


Close_Connection()


case GAME_EXIT call

Game_Exit()




}

}

3.2.1.3.3 Restrictions/limitations
The Main Event Loop could run without ending if the end loop constraints are not met.

3.2.1.3.4 Local data structures

None are scheduled to be used for this component.

3.2.1.3.5 Performance issues

Can slow down some systems if called too often, if loop iterates too quickly.  Without garbage collection, system resources can be wasted, can cause memory leaks.

3.2.1.3.6 Design constraints

Too many iterations of the Main Event loop can take up too much system resources.  Balance of game speed and number of iterations must be optimized.  

3.2.2 Description for the Ship Component
The Player object is the component that will figure the coordinates of the ship, the trajectory of the ship and any weapons launched from the Ship object.  This object will also have to keep track of the different varieties of weapons that may be fired from the ship on the screen.

3.2.2.1 Processing narrative (PSPEC) for component
The PLayer object will have a current location, a direction that the ship is facing, and the speed that the ship is currently traveling.  When the Main Event Loop receives user input from the keyboard or other input devices, the direction, speed, and location will change.  On the event that there is no user input, the ship will not move.  

3.2.2.2 Component interface description.
Input for the Player object:

· Keyboard input (rotate left/right, move forward/back(

· Mouse Input (fire weapon)
Output for the Player object

· new x coordinate

· new y coordinate

· new direction of movment

3.2.2.3 Component processing detail
3.2.2.3.1 Interface description

The Player object will process and distribute the current ship status for the local game instance.  The speed, direction, weapon fired info will be processed and displayed to the screen based on user input.

3.2.2.3.2 Algorithmic model (e.g., PDL)

Player object:

Player_Info_Processing (x_coord, y_coord, direction, speed)

{

· calculate the new ship position, firing status based on user input

} return x_coord, y_coord, direction, speed for game display information

3.2.2.3.3 Restrictions/limitations

The user will not be able to fly the ship outside of the game view.

3.2.2.3.4 Local data structures

New ship info structure based on current position, direction, speed and user input for new direction, speed, and direction.  This info is returned with the Ship procedure completion.

3.2.2.3.5 Performance issues

Ships that represent opposing players from a networked game perspective may not appear as they are represented on the client machine.  This is a data transfer rate constraint.

3.2.2.3.6 Design constraints

The ship playing field is four quadrants and the ship cannot venture out beyond these boundaries.

3.2.3 Description for Networking Component
The Networking component controls the data that passes from the client to the server in a multi-player game environment.  It does essentially for the game community what the Ship object does for the individual player.  It displays to all players the ships within the game environment, and the characteristics of each.  The characteristics are mentioned above in the Ship object component spec.

3.2.3.1 Processing narrative (PSPEC) for component n
The Networking component will control the data passing for each player to the server of the current game session.  The server will then pass out the information for each individual player to all playing in the game environment.  This information will give a Ship object ‘s location, trajectory, and firing of a Ship objects weapon.

3.2.3.2 Component interface description.
Input for Networking Component:

- Input for the Ship1 object:

· x coordinate

· y coordinate

· direction of movement

· speed of movment

· weapon fired

- Input for the Ship2 object:

· x coordinate

· y coordinate

· direction of movement

· speed of movment

· weapon fired

…

…

- Input for the Ship-n object:

· x coordinate

· y coordinate

· direction of movement

· speed of movment

· weapon fired

Output for Networking Component:

- Output for the Ship1 object to clients:


- return successful data transmission

- Output for the Ship2 object to clients:


- return successful data transmission …

…

…

- Output for the Shipn object to clients:


- return successful data transmission

The values for the IP addresses will be stored within a data structure and sent from within the Networking component based on timing, availability, network congestion…  The structure of the data packets for maximum performance is YTD.

3.2.3.3 Component processing detail
3.2.3.3.1 Interface description

The Networking component will get the Ship(n) information from the client to the server and distribute that information via data packet to the other client game instances.  

3.2.3.3.2 Algorithmic model (e.g., PDL)

Send_Ship_Info(Ship(n), x_coord, y_coord, direction, speed, weap_fired)

{

· make sure connection is alive

· send data pertaining to current Ship(n) to other game instances

· receive data transfer successful from client

} return successful_data_tranmission

Receive_Ship_Info(Ship(n), x_coord, y_coord, direction, speed, weap_fired)

{

· Calculate the ship and weapon information received

· Transmit successful transmission to server

· Submit Ship(n) info to local game instance

}

3.2.3.3.3 Restrictions/limitations

The client and or users must have LAN or Internet connectivity with a 128kb/sec or faster data transfer speed.

3.2.3.3.4 Local data structures

The newly calculated data on the ship object will be received from the client and passed directly to the receive 

3.2.3.3.5 Performance issues

The speed of the connection between game instances will affect the speed of play.  The game will move as fast as the slowest connection.  Given an optimized packet design, the game play speed should not be hindered by the connection to the other game instances.

3.2.3.3.6 Design constraints

The networking component will be using TCP/IP for data transfer.  In the event of data loss, the data must be resent.  In the event of connection loss, the game must either attempt reconnection or exit gracefully, not die abruptly.

3.3 Software Interface Description
3.3.1 External machine interfaces
The software will interface with a monitor to display the game on the monitor screen.  The software will also interface with a joystick/controller for ease of play for the user.  The software will interface with the user’s keyboard for game play information in the event that a joystick/controller is not used.

3.3.2 External system interfaces
The user must have a LAN connection/ Internet connection for this to function properly.  In the event that a multi-player game has been instantiated, the software will communicate in client/server fashion to pass data between the client and the server to display one’s actions, ship movement, ship firing to the other players.  The data will come from all the users and the server game instance if a game instance has been instantiated by the server, and will be redistributed to all the clients and the server game instance within the game play system.  At the end of a game instance, the statistics and a game winner will be broadcast to all the clients and the server game instance.

3.3.3 Human interface
The GUI front end and the game play screen will be the human interfaces for this software.

4.0 User interface design
4.1 Description of the user interface
4.1.1 Screen images
[image: image6.png]
Figure 1

[image: image7.png]
Figure 2

[image: image8.png]
Figure 3

4.1.2 Objects and actions
The spaces within the program interface are identified as follows: A Form is a window that displays all needed material for a given event. The entirety of figure one is a form the same is true for figure two and three.   

The Start form (figure 1) shows the ‘Create Server’ button or the ‘Connect’ button.  These give the user the ability to create a dedicated server or connect to an already existing server.  

The Server settings form (figure 2) gives the user the ability to set the screen size of the ‘universe’ and to start the server to run strictly as a server, or to allow the server to join in game play by selecting the ‘Dedicated Server’ check box.

The game form (figure 3) displays the ship placement, shots fired, health, the radar screen, and any player info that needs to be displayed.

The Stats is a set of values important to a player and posted into a panel area. The Status Bar represents the life meter and is located in the upper left corner (F 3). The Radar Screen is located in the top center of the main game from (figure 3). 

4.2 Interface design rules
       Within the Game Screen all views of the game screen shall have a black   background. All ships must have a light dominating color to contrast the screen.  Once any weapon leaves  the ship, it can still cause harm. 

                  Outside the Game Screen, the surrounding screen is blue for a difference in color, but not so significant that it is annoying or bothersome to the game player.
4.3 Components available



The following components are available. The .NET framework makes use of DirectX drawn forms, command buttons, text fields, and other assorted objects listed in the Toolbox. These pre-defined objects will be incorporated into the interface.

4.4
UIDS description

       The user interface before the actual game begins consists of three

 forms which are traversed according to a series of events that are

described as follows:

CASE Create/Connect To Server

      The user has the option to create a server or join an already existing server.

CASE Create Server

      The user creates a server instance and has the option to run as a dedicated server, or to join in the game play.


CASE Play Game

      The user then joins an already existing game, or creates the server and plays.  The server play is based on the selections within the server setup.

5.0 Restrictions, limitations, and constraints

Due to the multiplayer networking features of the game, we must account for firewall issues. Our initial product will support TCI/IP in a non-firewalled setting. Subsequent versions will contain support for firewalls.

 

6.0 Testing Issues

Test strategy and preliminary test case specification are presented in this section.

6.1 Classes of tests

A. Network Testing

1. Client lost network connection

a. How does the client respond?

b. How does the server respond?

2. Client response to large latency spikes.

B. AI Testing

1. AI seeking targets (target finder routine)

2. AI generator creates random personalities

C. UI Testing

1. Object collision detection

2. Server response to client actions/key press

D. Event Loop Testing

1. Game starts when users enter.

2. Game ends in LMS (last man standing) mode.

3. Game ends in time over mode.

6.2 Expected software response

A.1. a. Client shuts down gracefully.

A.1. b. Server removes client from game after 45 second.

A.2. Client maintains event loop based on last information. 

B.1. AI should move to nearest player within 30 sec of no contact.

B.2. Traits (datastructure) should be difference.

C.1. Objects whose bounding boxes overlap react to collision.

C.2. Client will receive server response w/in 2 second (good network) or

4 second (bad network.)

D.1. Client and server event loops must start when GO is pressed.

D.2. Game must go to score screen w/in 10 sec of last ship eliminated

D.3. Game must go to score screen w/in 5 sec of time elapsed.

6.3 Performance bounds


Game must exceed 45 frames per second on all desktop and notebook platforms. 

6.4 Identification of critical components

The critical components are:

· Game Engine: Frame Render
· Game Engine: Frame Update

· Game Engine: Load World

· Player: Draw

· Player: Update

· Player: OnKeyDown

· AI: Draw

· AI: Update

· Ship: Draw

· Bullet: Draw

· Bullet: Hit Test

· Bullet: Update

 

 SOFTWARE QUALITY ASSURANCE (SQA) PLAN
1.0 Introduction
1.1 Scope and intent of SQA activities
The intent of the SQA plan is to have conformance to explicit functional and performance requirements, implicit characteristics specifically regarding video game development, and development standards such as ISO 9000. A key goal is to maintain the integrity of the networking connections and the ability to compete with another player. In addition, there is an interest in measuring the cost of quality control spending against the benefits. 

2.0 SQA Tasks
 2.1 Task Overview
2.1.1 Description of SQA task 1
Preparing the SQA Plan includes making tests to be performed, audits and reviews relevant to the project, error reporting procedures and documents to be produced.

2.1.2 Work products and documentation

                            The SQA plan is the work product of this task.

2.1.1 Description of SQA task 2
Preparing the SQA Plan includes making tests to be performed, audits and reviews relevant to the project, error reporting procedures and documents to be produced. Carlos Black is responsible for this task.

2.1.2 Work products and documentation

   The SQA plan is the work product of this task.

2.1.3 Description of SQA task 3
Mark Maratea is responsible for developing an efficient process description.  This task involves verifying correctness with IS0 9000 standards, IEEE standards, and the rest of the documentation for the software.

2.1.4 Work products and documentation

           The process description, process change report, process change order, and process change request are the work product of this task.

2.1.5 Description of SQA task 4
Mark Maratea is responsible for creating the reviews for critical software configurations items as well as the project as a whole. This tasks involves keeping track of deviations and making sure they are handled properly

2.1.6 Work products and documentation

            The technical review summary report and issues list is the work product for this task. It is listed in the appendix.

2.2 Standards, Practices and Conventions (SPC)
ISO 9000 standards on software will be followed in this project, the portion of the ISO 9000 specifically relevant to this SQA plan is listed in the Appendix . Pressman’s Software Quality checklist will be used as a guide for ensuring a complete quality assurance plan. 

3.0 Reviews and Audits
3.1 Generic Review Guidelines
3.1.1 Conducting a Review
1. Review the product, not the producer.

2.  Set an agenda and maintain it.

3. Limit debate and rebuttal.

4. Enunciate problem areas, but don't attempt to solve every problem noted.

5. Take written notes.

6. Limit the number of participants and insist upon advance preparation.

7. Develop a checklist for each product that is likely to be reviewed.

8. Allocate resources and schedule time for FTRs.

9. Conduct meaningful training for all reviewers.

10. Review your early reviews.

3.1.2 Review work products
The Technical Review Summary report, Excel spreadsheet for statistical data, and all other written notes are review work products.

3.2 Formal Technical Reviews
 There are only 2 reviews planned

 3.2.9 Code Reviews

3.2.9.1 Description and focus of the review

To verify the code has been effectively translated into a working program derived from the design model.

 
3.2.9.2 Timing of the review

           The timing of the review is scheduled after the first phase of coding the program has begun.

            3.2.9.3 Work products produced

            The Code Review Tech Report, written notes and statistical data, including code reusability, lines of code, errors per class will be the work products of this phase

  


3.2.11 Change control reviews and audits

3.2.11.1 Description and focus of the review

The focus of this review is to make sure each change to the product can produce the CCA signature, an engineering change order, a change control request, and a change control report. In addition we verify that everything that has been changed in the program is traceable to the well-organized SCI’s.


 3.2.11.2 Timing of the review

This review takes place at the end of testing, it is the last portion of the software plan unless some changes have not been made yet that need to, or some changes were not properly documented.

 3.2.11.3 Work products produced

A SCI verification document is the work product produced as a result of this report.

 


 3.3 SQA Audits
             The informal audits will be conducted in the following areas and the technical review summary report will be a template.

1 System specification review
 2 Software project plan review
 3 RMMM review
 4 Requirements reviews (models, specification)
 5 Data design review
 6 Architectural design review
 7 Interface (GUI) design review
10 Test specification review
 

4.0 Software Process Improvement Activities
.

4.1 Goal and objectives of SPI
The goal of SPI is to understand where our strengths and weaknesses are on a phase level and make meaningful changes to the process bases on the data collected. 

4.2 SPI tasks and responsibilities
Normally, statistical software process improvement is an advanced goal within an organization’s PI activities. However, since this project is not being done for a profit, the members are more likely to feel comfortable with these techniques. Here are the six tasks we will follow:

1. All errors and defects are categorized by origin (e.g., flaw in specification, flaw in logic, nonconformance to standards). 

2. The cost to correct each error and defect is recorded. 

3. The number of errors and defects in each category is counted and ranked in descending order. 

4. The overall cost of errors and defects in each category is computed. 

5. Resultant data are analyzed to uncover the categories that result in highest cost to us. 

6. Plans are developed to modify the process with the intent of eliminating (or reducing the frequency of) the class of errors and defects that is most costly. 

5.0 Appendix

ISO 9000
	Develop quality plans to control your software development projects.
· Your quality plans should control:
· Project implementation. 

· Project schedules. 

· Project resources. 

· Project approvals. 

· Project phases. 

· When a phase can begin. 

· When a phase has been completed. 

· Your quality plans should define:
· Quality requirements. 

· Responsibilities. 

· Authorities. 

· Life cycle model. 

· Review methods. 

· Testing methods. 

· Verification methods. 

· Validation methods. 

· Develop detailed quality plans and procedures, and define 
specific responsibilities and authorities to control:
· Configuration management. 

· Product verification. 

· Verification of your developed products. 

· Verification of your purchased products. 

· Verification of your customer-supplied products. 

· Product validation. 

· Validation of your developed products. 

· Validation of your purchased products. 

· Nonconforming products. 

· Corrective actions. 

· Your quality plans may include or refer to: 

· Generic project, product, or contract procedures. 

· Special project, product, or contract procedures. 

· Your quality plan can be a separate document or it can be part of another larger document. Or, it can be made up of several specific documents. 

· Your quality plan should be updated and refined 
as your software development plan is implemented. 

Make sure that all participating groups and organizations get a chance to review and approve the quality plan before it is implemented. 


	 

	ISO 9000-3 
	4.3 Contract review

	4.3.1
General 
	Develop and document procedures to coordinate the review of sales orders and customer contracts. Make sure you include the customer in the process of review.
Develop and document procedures to coordinate the review of software development contracts. Develop procedures to coordinate the review of contracts that affect:
· Software that will be developed for a customer. 

· Software that will be developed for a market sector. 

· Software that will be embedded in a hardware product. 

· Software that will be developed for your internal use.

	4.3.2
Review 

  
	Your contract review procedures should ensure that all contractual requirements are acceptable before you agree to provide products to your customers. Specifically, your procedures should make sure that:
· Your customer's order is clearly and completely defined. 
When verbal orders are received, make sure that you 
and your customer agree on what is required. 

· You have resolved all differences between the original
tender or proposal and the final contract or sales order. 

· Your organization is capable of supplying the 
products ordered by the customer. 

	Customer contract
review
questions 
	· Have you and your customer agreed on terminology? 

· Have you and your customer agreed on the criteria 
that will be used to accept or reject your product? 

· Have you and your customer agreed on the data 
and facilities that will be provided by the customer? 

· Have you and your customer agreed on how
joint progress reviews will be carried out? 

· Have you and your customer agreed on how 
joint product development will be carried out? 

· Have you and your customer agreed on which life 
cycle processes will be imposed by the customer? 

· Have you and your customer agreed on how 
your software product will be deployed? 

· Have you and your customer agreed on 
how software users will be trained? 

· Have you and your customer agreed on how you 
will handle changes in customer requirements? 

· Have you agreed on how changes will be 
handled during software development? 

· Have you agreed on how changes will be 
handled during software maintenance? 

· Have you and your customers agreed on 
how software upgrades will be handled? 

· Have you and your customers agreed on how 
historical software versions will be handled? 

· Have you and your customers agreed on how 
problems will be handled after product acceptance? 

· Have you agreed on how complaints will be handled? 

· Have you agreed on how claims will be handled? 

· Have you agreed on who will be responsible 
for nonconformities after the warranty runs out? 

· Are you satisfied that your customer will be able 
to meet all of his contractual obligations? 

	Technical
contract
review
questions 
	· Have you established that the project is feasible 
and that all requirements can be met? 

· Have you identified all the software development 
standards that will be referred to during the project? 

· Have you defined all the software development 
procedures that will be used during the project? 

· Have you defined all the facilities, tools, data, and 
other items that must be provided by the customer? 

· Have you developed and documented methods
for determining whether customer supplied
facilities, tools, data, and items are suitable? 

· Have you clarified which operating system 
and which hardware platform will be used? 

· Have you agreed on how interfaces with 
the software product will be controlled? 

· Have you defined all software replication 
and distribution requirements?

	Management contract review
questions  
	· Have you identified significant risks and contingencies? 

· Have you evaluated the impact these could have? 

· Have you clarified the extent of your responsibility 
for subcontracted work? 

· Have you established a project schedule? 

· Does it say when progress reviews will be done? 

· Does it say when technical reviews will be done? 

· Does it say when deliverables are due? 

· Have you clarified and documented all installation, 
maintenance, and support requirements? 

· Have you confirmed that all resources will 
be available when you need them? 

· Will all technical resources be available? 

· Will all human resources be available? 

· Will all financial resources be available? 

	Legal contract
review questions 
	· Have you taken steps to respect the rights of others? 

· Will you respect all intellectual property rights? 

· Will you respect all licensing agreements? 

· Will you respect all confidentiality requirements? 

· Have you clarified the rules governing the 
guardianship of the master software copy?
· Have you clarified the conditions under which 
the customer may access or verify the master copy? 

· Have you clarified exactly what kinds of information 
will or will not be disclosed to the customer? 

· Have you defined all product warranty terms? 

· Have you defined all contractual liabilities and penalties? 

	4.3.3
Amendments 
	Develop procedures which specify how customer contracts 
are amended, and which ensure that changes in contracts 
are communicated throughout the organization.

	4.3.4
Records 
	Develop a record keeping system that you can use to 
document the review of customer orders and contracts.


TEST SPECIFICATION
1.0 Introduction
 1.1 Goals and objectives
The major goals of the test plan is to decide what strategies to use in testing and to pick which test cases are crucial to the success for the project. All tests should be traceable to Customer Requirements, Implicit Requirements(in Game Design) and Industry Standards, namely ISO 9000. It is expected to have a test plan long before testing begins. Even though testing should ideally be conducted by a third party, most of the testing will be done by the original software team.

 1.2 Statement of scope

Most of the testing will not go beyond the class interface level. In the case of the testing of AI functions, black box testing will be used.  Compatibility with other operating systems besides Microsoft 2000 and higher will not be examined. The primary focus is on having proper network testing results.   Minor anomalies within the game events are expected given time and budget constraints.

 1.3 Major constraints
The amount of time we have to test the software limits the ability of the program to be bug-free. Also there is no access to a 3rd party testing team. It will be difficult to yield objective results in testing. The resources we have will limit our testing.  Network testing can only be done at the proper labs.  Therefore, the testers are unable to do their work at their home.

2.0 Test Plan
This section describes the overall testing strategy and the project management issues that are required to properly execute effective tests.

2.1 Software to be tested
The complete Space Wars program will be tested in this plan.

2.2 Testing strategy
2.2.1 Unit testing
Unit testing will generally not be used here because the program is object oriented.  Almost all events are defined with 2 or more class objects.

2.2.2 Integration testing
The integration strategy will start by connection the parts need to build a communication network. The classes that update the client packet will be accessed by the end user controls one at a time. When all user classes are successful in filling a network packet, the communication classes will be built. The Server packet will mimic the client server packet..  Next, the interface between client packet to server packet will be tested. The Board Game Class interface with the 2 send and receive Server Packets will come next.  Finally the ship and weapons interface with the server database will be checked.

2.2.3 Validation testing


The validity of the network connection between each client and server will be tested first , a dummy chat room class may be used as a stub  to ensure the connection is active. Then ship movement validation will be checked. Afterwards, the ability to destroy ships and cause collisions will be reviewed. Finally We will be validating the computing power of the AI SHIPS and beta tester will make sure they are challenging

2.2.4 High-order testing
  
The system will first test how the system behaves when it is under the maximum pressure, aka stress testing.  Then, Recovery Testing will be used to determine how severe a systems crash is to the end user. Beta Testers will be used throughout the high order testing. Finally, the security of classes will be checked to prevent hackers from using them to modify the program.

2.4 Test work products
The test cases table will include all of our test work products. The test description work product defines all of our test cases. The input work product is needed for the tester to begin his or her work. The Expected Output work product is needed to match against the Actual Output work product to determine if the program is working correctly or not. The Pass/Fail Comments work product is needed to evaluate what changes need to be made to the system and what can possibly be over looked

2.5 Test record keeping
As stated in 2.4 the Test table will keep track of progress in the test plan.  The table will be stored on an EXCEL 2000 spreadsheet. This makes it easier to compute statistics given the data collected.

2.6 Test metrics

The defect amplification model will be used as a metric in measuring how severe a type of error is. Also, the errors per SEI will be used to determine what areas need extensive review. Halstead metrics will be used to determine testing effort. 

Halstead:

PL = 1/[(n1/2)  * (N2/ n2)]

E = V/PL

V = volume

PL =program level

e =  software science effort

2.7 Testing tools and environment
The test environment will be a set of 8 networked computers in the Networking Lab.  Beta Testers will assist in this process. Microsoft 2000 or higher must be present . Minitab may be used to process statistical data collected.

 
3.0 Test Procedure
 3.1 Software to be tested
Please see Section 2.1 for the software to be tested.

 3.2 Testing procedure

Please see the test table for sections 3.2. 

3.3 Testing resources and staffing
Section 2.7 discusses the testing resources and staffing that will be used

3.4 Test work products
Section 2.4 discusses the test work products of the testing procedure

3.5 Test record keeping and test log
.Section 2.5 discusses test record keeping and test logs.

	Test Number
	Test Description
	Input
	Expected Output
	Actual Output
	Pass / Fail / Comments

	1
	Start Program
	Click on the program icon
	Starts UserInterface with New Game and Quit options
	Starts UserInterface with New Game and Quit options
	Pass

	2
	New Game
	(1) then click on new game
	Switch UI to Host, Join, Quit.
	Switch UI to Host, Join, Quit..
	Pass

	3
	Quit from Main 
	(1) then Quit
	Exit to Desktop
	Exit to Desktop
	Pass

	4
	Host
	(2) then Host
	Display loading screen then start game
	Display loading screen then start game
	Pass

	5
	Join
	(2) the Join
	Display screen prompting for IP address
	Display screen prompting for IP address
	Pass

	6
	Quit from selection
	(2) then quit
	Exit to Desktop .
	Exit to Desktop
	Pass

	7
	Join an invalid IP
	(5) then enters an IP with no game hosted followed by the yes command
	Client is prompted the IP is invalid
	Client loads into game
	FAIL

	8
	Join a valid IP
	(5) then a valid hosted IP.
	Loads game.
	Loads an incorrect game state. Fails to connect.
	FAIL


	Test Number
	Test Description
	Input
	Expected Output
	Actual Output
	Pass / Fail / Comments

	9
	Play Game (single player)
	(4) then plays game until dead
	Client dies. Death screen loaded.
	Client dies. Death screen loaded.
	Pass

	10
	Death Screen Exit
	(9) then hits escape
	Will not exit until the escape key is pressed
	Will not exit until the escape key is pressed
	Pass

	11
	Quit client
	Client hits  ESC during normal game play
	Return to desktop. 
	Client exits gracefully. 
	Pass

	12
	Single player passes first level
	(9) Kills all of the enemies on the first level. 
	Level transition screen appears then new level is loaded.
	Level transition screen appears then new level is loaded.
	Pass

	13
	Single Player passes second level
	(12) Kills all of the enemies on the second level.
	Level transition screen appears then new level is loaded.
	Level transition screen appears then new level is loaded..
	Pass

	14
	Single Player passes 3rd level
	(13) Kills all of the enemies on the third level
	You have won screen appears. Waits on escape to exit.
	You have won screen appears. Waits on escape to exit.
	Pass

	15
	Won Screen displayed. Exit game
	(14) and then exit via escape key
	Exit to desktop
	Exit to desktop
	Pass

	16
	Single player turning
	During a single player game, use the arrow keys or mouse to rotate L or R
	Player turns on the map. Able to spin around. Model stays in same relative location.
	Player turns on the map. Able to spin around. Model stays in same relative location.
	Pass

	17
	Single player movement
	During a single player game, use the arrow keys Up and Down to move forward and back.
	Player’s ship moves forward and back.
	Player’s ship moves forward and back.
	Pass

	18
	Single Player fires
	Fire a bullet
	Bullet fires. Particle effects. 
	Bullet fires. Particle effects.
	Pass


	Test Number
	Test Description
	Input
	Expected Output
	Actual Output
	Pass / Fail / Comments

	19
	Single Player fires at enemy (hit)
	Fire a bullet
	Bullet fires. Particle effects. Enemy is hit. Armor is reduced. Explosion sound
	Bullet fires. Particle effects.  Enemy is hit. Armor is reduced. Explosion sound
	Pass

	20
	Single player fires at enemy and kills him
	Fire a bullet. Enemy is low health.
	Enemy dies and is removed from game. Remaining enemy counter is reduced.
	Enemy dies and is removed from game. Remaining enemy counter is reduced.
	Pass

	21
	Enemy fires at player and hits.
	N/A
	Bullet fired. Player is hit and loses health. Explosion effect played
	Bullet fired. Player is hit and loses health. Explosion effect played
	Pass

	22
	Enemy fires at player and hits, killing player.
	N/A
	Bullet fired. Player is hit and dies. Explosion effect played. Death screen appears.
	Bullet fired. Player is hit and dies. Explosion effect played. Death screen appears.
	Pass

	23
	Join a game and fight enemies
	Select join, play game as normal
	Integrate to existing game
	Displays default shell image. Crashes host.
	FAIL

	24
	Sound effects 
Test
	Fire a bullet and hear it hit
	Hear fire for each hit.
	Does not relay fire sound if hits are too close. 
	Pass


KNOWN ISSUES

This version of software has several known issues that affect game performance and /or stability. The issues are as follows:

· Multiplayer networking fails to pass/read data. Slows down both client and host. Kills host.
· Multi-click on the “new” button can advance through the next screen.

· Sound effects can not overlap – some effects not fired. Need more sound devices.

· Ship to ship collision not implemented.

· 3D movement is restricted to 2D only

FUTURE MAINTENANCE SUGGESTIONS


The following suggestions encompass the whole of our experience with this project:

1. Rework the networking model. Get the connection to work properly.
2. Implement 3D space movement. Fix 3D rotation issues.
3. Rework AI so that there are fighting patterns and not just home and seek.

4. Add additional ships.

5. Add additional weapon types (homing missiles, lasers)

6. Tweak user interface – allow users to enter name and select color;.

 APPENDIX A: USER MANUAL

SPACEWARS !!! 

USER MANUAL

Introduction:


Purpose:

SPACE WARS is a high velocity multiplayer space fighter game. Each player controls a Avalanche Mk IV space interceptor armed with a Maxitron pulse cannon. Your goal is to destroy the ships of all the other players in order to become the super champion.

Operating Environment:


SPACE WARS will run in any Win32 environment with DirectX 9.0c and the newest version of the .NET framework. The machine must have a network connection in order to play.


General Functionality:


SPACE WARS will connect, via IP address, to any local server. Players will continue to play and score for as long as they wish.


Limitations:


Users must have the .NET framework.


The server must be directly visible (firewall support is not included.)


Port 495 must be open for transmission.

Installation:


Requirements:


500 KB of space is required for the SPACE WARS demo. The executable must be located in the same directory as the .wav sound files.


Software Installation:


The game can be copied to any location with no problems.

Tutorial
[image: image9.png]
Figure 1:  The start screen.  This screen gives the user the ability to start a new game or quit.
[image: image10.png]
Figure 2:  Game selection screen. This screen give the user the ability to Host a new game or join a hosted game.
[image: image11.png]
Figure 3:  The game play ‘universe’.  This screen is the game loading screen seen whenever a level is loading.
[image: image12.png]
Figure 5:  The game play ‘universe’.  The screen shows the players ship, remote player ship, and enemy ship(s). 
Detailed Instructions:


User Inputs:

The arrow keys are used for movement. The UP key will move the ship forward. The left and right keys will rotate the ship in space.  The Down key will move the ship backwards.

The right mouse button is used to activate the weapons system.


Moving the mouse left and right will cause the ship to rotate.


The ESCAPE key is used to exit the game.


Output:

As per the example, your score and armor status and number of remaining enemies are displayed in the upper right corner.


Error Handling:


In the case of any client side error, simply restart the client.

APPENDIX B: SOURCE CODE

Game



Level



AI



Players



ship



bullet



Is part of



Is part of



Is part of



contains



Exists



Draws



uses



fire



Cycles



Main

Loop 



Symbol key



Modality

Optional:              Required:



Cardinality

Many:               One:



Data object



Relation-ship



User Input



AI List



Engine: OnFrameMove



Sound



Game Exit



Framework MainLoop



Screen Output



Bullet List



Engine: OnFrameRender



PlayerList



Enter Valid IP.



Host Game?



Start Game Program



End of game



No



No



Yes



Yes



Play game



Yes



Play again?



No



End program



Load World



Start Game



Exit Game





Play game



End of game, show statistics



Play single player game

And start network engine



Game Start Up:

Host Game or Join Game



Join multiplayer game scenario



Play Again? (Y/N)



Join multiplayer game



Enter multi player info



Shut down software



Quit game



Ship



Ship



Ship



Bullets



Network



Sounds



Remote Players



Local Player



Game Engine



Input









Bullet



Sound



AI Players



Fire



AI



Create



Draw



Update



Update



Object



Player



Create



Draw



Update



Engine



Create



Object



Create



Draw



Play



Draw



Update





PAGE  
2

