Batman – Missiles Over Gotham

David Nowell

CIS 588

4/27/05

1. Overview

a. Appearance

Batman – M.O.G. uses a first-person shooter perspective, however, the player’s character will be visible and set just in front of the camera. The player will be represented by a Batwing, which is Batman’s plane. The game is set in a a maze, with 3-dimensional solid objects floating in front of the player’s avatar. The player will have several options to change the view of the game world. Objects can be toggled between solid and wire-frame. In addition, the color of the game objects will change if a power-up is active. I also plan to include a small 2-dimensional map inset in the upper right corner of the screen. This would allow the player to easily see his location in relation to any remaining objects.

b. Story Abstract

In this game, the player controls Batman in the Batwing plane. The goal is to defuse all the missiles that have been spread around Gotham before they launch. There are robots guarding the missiles however, and if Batman encounters any of them without an active power-up, the robot will destroy the Batwing. If all three Batwings are destroyed, the game ends.

c. Gameplay

From a game-logic standpoint, this will be very similar to the arcade classic Pac-Man. I will assume the reader is familiar with how to play Pac-Man, and primarily discuss the differences and similarities between the two games.

Instead of eating yellow dots, the player will be Batman, defusing missiles. To accomplish this, the Batwing just needs to be maneuvered through a missile on the map. Once a missile is removed, it will stay removed for the remainder of that level. Whereas Pac-Man eats power-up berries, Batman will come across swords, representing an attack upgrade to his plane. While Pac-Man has ghosts that chase him around the screen, Batman will be chased by robots. However, unlike Pac-Man, the number of robots will vary based on the level of the game. Also, I intend to have the robots start in random locations on the map instead of spawning from a locked area in the middle of the screen. The robots will destroy the Batwing if they touch it while it’s not powered-up. When the Batwing is under the effect of a sword power-up, the robots will stop chasing Batman and head away from him if he approaches too closely.

The map in the upper corner will look similar to the original Pac-Man game. In order to prevent the player from simply using that to control his character and not playing in 3-D, I intend to just show missiles on that map. The player will not be able to use it to see where the robots are, and will have to watch the screen for approaching enemies. The robots will be at a different height than the missiles, so they should be visible from a distance.

d. Development Platform

Batman – M.O.G. was written using many of the functions from Andre LaMothe’s 3D Game Engine library, from his book, Tricks of the 3D Game Programming Gurus. I used Microsoft Visual C++ 6.0 to write the program, running on the Windows 2000 Operating System. The DirectX 8.1 SDK was used for many of the function calls, and the DirectX runtime will be necessary on computers playing the game. It was also written assuming a 16-bit display setting, and won’t look right in a different format.

2. Game Mechanics

a. User Interface Description

Keyboard Controls:

The player will navigate the Batwing around the maze by use of the arrow keys. This will only allow movement left and right, and forward and backward. Walls will prevent the player from moving any further in that direction. Further movement details will be discussed in section 3b.

Distinct User Areas:

The first thing the user will be required to do is install the game. To make this as simple as possible, all the necessary files will be included within a self-extracting executable file. Upon loading the game, there will be a splash screen with a logo on it. From there the user can go to a help menu or play the game. Between levels, there will be a cut-scene showing Batman. If the player dies, there will be another screen allowing him to choose between playing again or exiting the game. A similar screen will be shown if the player wins. This will be discussed in more detail in section 3c.

b. Use Cases

I will only present use cases for in-game scenarios. Details on how to load the game are unnecessary.

Disarming a Missile:

1. Player sees missile in field of view.

2. Player turns Batwing toward missile using left & right arrow keys.

3. Player uses forward arrow key to move through the missile.

4. Upon encountering the missile, it is disarmed and disappears.

Taking a Power-up:

1. Player sees power-up in field of view.

2. Player turns Batwing toward power-up using left & right arrow keys.

3. Player uses forward arrow key to move through the power-up.

4. Upon encountering the missile, it is activated and disappears.

5. Batwing changes color, indicating power-up is in effect.

6. After 10 seconds, the Batwing begins flashing, indicating that the power-up is wearing off.

7. At the 15 second mark, the power-up is no longer active, and the Batwing returns to original color.

Destroying a Robot:

1. Player sees robot in field of view.

2. If player has an active power-up, he can approach. If not, avoid!

3. Player turns Batwing toward robot using left & right arrow keys.

4. Player uses forward arrow key to move through the robot.

5. If the power-up is active at time of contact, the robot is destroyed.

6. The robot will remain out of the game for 20 seconds, at which point it will respawn.

c. Storytelling

Batman – M.O.G. uses two different approaches for storytelling. At the beginning of the game, a narrative technique will be employed to give the story background. Between levels, cutscenes will be used to show the different locations that Batman is moving to each time. Finally, at the end of the game, whether the player wins or loses, a narrative summary of the results will tell the player how he did and whether Gotham is saved or not.

d. Level Summary

There are four levels to the game, growing progressively harder. Each level will have the same map and non-animated objects, with the only difference being the number of A.I. robots chasing the player. Here is an overhead shot of how the map will look:

[image: image1.jpg]Aot
Joog

i

L

L

Each corner of the map will have a power-up object, and the robots will spawn from various locations

3. User Interface Design

a. Key Screen Images

This is the initial title screen:

[image: image2.jpg]

This is a prototype shot of how the maze will look. Note the lack of walls, they have not been added in yet. The Batwing is visible in the lower portion of the screen, although it has been rotated 90 degrees to allow for a better view of it. The missiles are floating in front of the plane, and the perspective allows the player to see at least 4 objects in front of him.

[image: image3.jpg]

This is a shot of the enemy robot. The player will want to avoid these unless a power-up is active. Behind the robot you can see a power-up, and missiles even further behind that.

[image: image4.jpg]

In this screenshot the player is approaching a power-up icon.

[image: image5.jpg]

b. Control Summary

The player will navigate the Batwing around the maze by use of the arrow keys. This will only allow movement left and right, and forward and backward. If I have time, I would like to use DirectInput to allow for the use of a joystick.

c. State Transition Diagrams

While the majority of gametime will be spent in the 3-D map portion of the game, there will be other activities, from installation to viewing instructions, cutscenes, and victory / defeat screens.

[image: image6.jpg]LOGO SCREEN)
‘ WIN
HELP MENU PLAY GAME H

=
L cuTsCENE| /| DIE / LOSE
QUIT SCREEN /

SCORE [

/

\

RETURN TO 0/S

d. Design Rules

The main design rules I want to follow are making the game intuitive and keeping the environment consistent. The player will not be able to fly through walls, 3-D objects will not disappear into each other – basically, the environment will react like the player would expect. This will be accomplished by keeping the robots lower than the others objects they move through, and using bounding boxes to determine when to remove objects from the screen, and how close to the walls the Batwing can move.

4. Artificial Intelligence

a. Opponent AI

The Opponent AI will consist of one to four enemy robots, depending on what level the player is on. They will exhibit a very simple reactive AI. The robots will have full world knowledge of both the layout of the game map and the location of the player. This knowledge will be used to have them move toward the player in an attempt to hit him. If the player stops moving for any reason, within a short period of time the robots will kill him. The AI will use a simple algorithm to determine if the player is further away on the horizontal or vertical axis. Whichever one is a greater distance, the robot will try and close that gap first if the map allows it. If not, he will move along the other axis. If the robot is in a situation where he is on the same line as the player, but there is a barrier in the way, he will move around the barrier and then continue toward the player.

b. Non-Player Characters

The only NPCs in the game are the robots, which are already covered under Opponent AI, section 4a.

c. Reactive Items

There are two types of items in this game. The first, and most common, is the Missile. When the Batwing flies over a missile, it gets disarmed. This is represented by removing the missile from the game. The other type of item is a power-up. This looks like a short sword, and represents a temporary upgrade to the Batwing’s weaponry. When this is picked up, Batman is able to destroy any robots he encounters in the next 15 seconds. Like the missile, these are also removed from the game after being taken by the player.

5. Story Overview

a. Plot Summary

In this game, the player controls Batman in the Batwing plane. Batman has learned that someone has spread missiles around Gotham City in four different locations. The missiles are guarded by robots. Batman will need to use one of his three Batwing planes to disarm the missiles. If all three are destroyed, the remaining missiles will detonate, destroying much of Gotham.

b. Story Board

First there will be the title screen, which is shown in 3a. Then the story will scroll explaining about the missiles in Gotham. This will be the cutscene, before moving into the gameplay.

[image: image7.jpg]

Sample screenshots from the game can be seen in section 3a.

This will appear between levels, letting the player know how many more levels remain.

[image: image8.jpg]

c. Character Bible

Batman is the alter-ego of Bruce Wayne, a billionaire industrialist who was driven to fight crime after his parents were murdered by a mugger when he was a child.

The robots are generic robots programmed to attack Batman on sight, presumably created by one of his enemies. Perhaps the Joker?

6. Game Progression

a. Flowchart

This chart shows the different levels of game play and where the player can end up depending on how he does.

[image: image9.jpg]Level 1

Cutscene

fictory
Screen

New Game?

b. Level and Scene Details

Sections 1c & 2d cover most of the details, so I will just summarize here and add a few additional pieces of information. The player will be maneuvering the Batwing through the map, flying through missiles to disarm them. The robots can move through the missiles without disarming them. Where there are power-ups on the board, these will replace the missiles.

Level 1 will start with one robot chasing Batman, and each level will get progressively harder, adding an additional robot. To compensate for the increased difficulty, each level will have a number of power-ups corresponding to the number of robots in that level. These two changes will not be the only distinguishing feature between different levels. The color for each level will also change, giving the player a further sense of progress as he gets further into the game.

7. Bibliography

I found some useful tips on how to write a Design Document here:

http://www.ihfsoft.com/designdocuments.htm#designdocumenttemplate
For game code & reference, I primarily used this book:

Tricks of the 3D Game Programming Gurus, Lamothe, Andre, 2003.

3-D Models came from:

http://www.3dcafe.com/

http://www.the3darchive.com
8. Lessons Learned / Compromises Reached / Updates

I’ve learned that displaying 3-D objects is not an easy task. I’ve had issues with finding objects, and then converting them to a format readable by the LaMothe libraries. Getting them to appear in the field of view of the camera was another challenge. Implementing a bounding system that prevents the player from moving past a certain area, but looks realistic regardless of the angle the player object is at was difficult. I had enough trouble with the exterior boundaries that I did not have enough time to create interior walls as planned. This impacts the AI, but only minimally. While the AI no longer has to dodge interior walls, it otherwise functions as intended, moving toward the player if appropriate, and retreating when the player has an active powerup.

Each robot has a distinct movement rate, designed to make them appear to behave differently. While they all have the same approximate total movement each round, each one moves at a different rate in the X & Z direction. This also ensures that even if the robots do overlap the same space at some point, they will separate out as they continue moving.

I also had difficulty getting cutscene & introduction bitmaps to load correctly. I underestimated the time it would take to do that, and spent all my time working on the actual game, leaving me without enough time to do more than put some crude graphics in and write status information to the screen.

Besides those changes, the rest of the game was completed as I planned. I did add powerups to the 2-D map after player testing concluded that it was too hard to find them otherwise.

Overall, the LaMothe library was easy to use and supported a wide variety of options in 3-D programming.

