CIS 487

2010

Matthew Smudz and Watson Tong

With artwork by Dylan Gallagher of the University of Toledo and sound design by Charles Toeppe of University of Michigan - Dearborn
Assignment 2 – 2D game
Monsters Wake

Table of Contents
1. Executive Summary
2
 Abstract of game story
2
2. Gamplay Look and Feel
2
2a. Appearance
2
i. Environment
2
ii. Monsters
3
2b. Player Roles and Actions
4
2c. Strategies and Motivation
4
2d. Level Summary/Story Progression
5
2e. Controls
5
2f. Interface
6
2g. Sound and Music
7
3. Development Specification
7
3a. Hardware
7
3b. Software
7
3c. Algorithm Style
8
i. Monster Spawning and Hunting Algorithms
8
ii. Game State Change Algorithm
8
iii. Level Flow Algorithm
8
1. Executive summary

1a. Abstract of game story

A disturbance in the laws of physics is taking place in an alchemist’s mansion. This disturbance has caused several inter-dimensional rifts to open, leading to the spillage of the horrifying denizens of another world into ours. Apart from the influx of monsters, the misbehaving laws of physics threaten the stability of the world itself.

The story is introduced through a series of words and loosely-strung sentences flashing atop one another in rapid succession. Often the words are misaligned and out of order, intentionally disorienting the player and forcing them to use free association to create an impression of the plot rather than giving them a total knowledge of it. This narrative Rorschach test should reinforce the impression that the universe is falling apart at the seams, and even the story itself is becoming jumbled.

The player character must stave off the attack and close the inter-dimensional portals. It is not immediately clear who this character is; his is simply well-armed and has a mission. At the end of the game, the character will step into the final portal as it engulfs him, thus revealing himself to be from the threatening dimension.
We never actually see the so-called alchemist. It is implied that by closing the final portal, the character is actually opening the next, unleashing havoc on another universe only to undo it and repeat the process eternally.
The overall tone of the story and game are strongly influenced by the inexplicable horrors portrayed by author H.P. Lovecraft. It is also heavily inspired by the Half Life games, Steven King's novella The Mist, and the novel House of Leaves by Mark Z. Danielewski.

Due to its violent and possibly frightening content, the game is intended for an adult and late teenage audience.
2. Gameplay Look and Feel

2a. Appearance

The graphics of the game have a painterly style that is neither overly realistic nor cartoonish. The general aesthetic of the game emphasizes the brutality and disfigurement of the monsters, as well as the decrepit nature of the mansion. Parts of the mansion appear to make no physical sense, such as a hallway that stretches off into total darkness.
I. Environment

The game takes place entirely in the mansion. This mansion should have a decrepit, hyper-aged look. Surfaces should appear dusty and untouched. It should look as though it has not been lived in. Some candles are still burning, though it is not clear who lit them. The mansion is also littered with graffiti, some of which hints at the event of the story or points the player in the right direction. It is left to the player to infer who made the graffiti.
The following is an example of one of the room’s stairwells, used to traverse the mansion vertically, which emphasizes the aged look of the mansion:

[image: image1.png]

II. Monsters

The game's monsters are heavily influenced by the 80's horror film The Thing. They are loosely anthropoidal and constructed out of distorted flesh. They are utter violations of the human form; lumbering, disfigured golems whose faces appear to be caving in upon themselves. Their animations are jittery, as if they are constantly seizing.

[image: image2.png]

2b. Player roles and actions

The player is initially equipped with a handgun, a fixed amount of ammunition, and full health. They are given the following main tasks:

(a) Survive: the player must fend off the horde of monsters in order to not be killed.

(b) Gather ammunition and health. The player will find it difficult to survive for long without doing this.

(c) Destroy the portals that are spawning monsters. The player must shoot portals to close them. After a portal is destroyed, it will spawn somewhere else throughout the house. A portal will never respawn in the player’s room or in the room it was previously destroyed in. Additionally, due to their small size and importance for transportation throughout the mansion, stairwells will never contain portals. Due to the immensity of the map and the randomness of the portal locations, the player will be informed if they are on the same floor as a portal (though they are not told which direction to go in to find it).
Upon beating the game, the player will be shown their stats (accuracy and number of monsters killed). If they die, they will be shown a game over screen.

2c. Strategies and motivations

Some players may be focused on speed, while others may desire to explore and find the maximum amount of ammo. Each strategy has its benefits and tradeoffs.
Players concerned with speed will need to locate the portals as fast as possible. This will likely involve visiting each floor rapidly until they are told which floor contains the portal. On some of the wider floors, such as the first and second floor, it may not be clear which direction to travel in; the player will have to take a chance and choose for themselves. If monsters have been given long enough to spawn, the player’s strategy may be following the outpouring of monsters to its source. Players who take this approach and manage to find the portals quickly gain the advantage of not having too many monsters to kill. This is because the monsters will not have had enough time to spawn in significant amounts. However, since ammo is also randomly distributed, the player may not happen across ammo in their linear path to the portal. They may find themselves running out of ammo quickly. Once a player has run out of ammo, it is extremely difficult to navigate through the mansion without getting hurt by monsters obstructing the way. Therefore, not having a healthy buffer of ammo is a significant risk.
Alternatively, a player may choose to explore the large mansion and try to find supplies, which come in the form of bundled ammunition and health. The player can accumulate a large amount of ammo before taking on the challenge of closing the portals. On the upside, these players will not run the serious risk of running out of ammunition. However, by not going to the portal quickly, they may find a much larger resistance awaiting them, thus requiring the use of more ammunition. Another risk is that if the player is full on health when they get the health/ammunition packs, they will receive the bonus of additional ammo, but they will be wasting the additional health. More conservative players may want to save these packs for when they are most needed.
Players will likely find a middle ground between these strategies, or may adapt to the situation by alternating between them.

2d. Level summary/story progression

The mansion is split up into separate rooms, each of which functions as an individual unit. The following map of the game illustrates the mansion’s features and layout:
[image: image3.png]Bathroom Bedroom

The central stairwell allows the player to traverse the mansion vertically. The roof area seems particularly affected by the influence of the monsters, and appears to be in the process of being consumed by a very large monster or becoming one itself. This detail is left intentionally ambiguous.
Interaction with the environments is relatively minimal. The player will simply walk through a door on the edge of the screen or press up/down near a stairwell to be transported to the adjacent room.
The alchemy lab (seen in orange on the far left of the map) is supposedly the site where the accident that caused the portals to open occurred. The alchemist himself is never seen, though, again causing the player to wonder whether or not the alchemist actually caused the event, was a victim of it, or never existed at all.
The final progression of the story is revealed when the player beats the game, jumping into the last portal and revealing that they are from the alternate universe that the monsters sprang from.
2e. Controls
The players will move left and right using the A and D keys, respectively. W and S can be used near a stairwell to travel up or down. The mouse is used to aim the player’s weapon; the player’s reticule will follow the position of the mouse. This will allow the player to move and aim autonomously, in some cases walking backward while they shoot in one direction, or shooting and running in the same direction. The player moves noticeably slower when walking backward (that is, when moving in the opposite direction that they are aiming). While the player’s gun will reload automatically after a magazine is expended, the player can also choose to manually reload by pressing R. The player may want to do this if they don’t have quite enough shots left to take on another monster, or to prepare in advance before entering another room.
The space bar is used to pick up ammunition/health packs when the player is standing over them. Because the player must explicitly choose to pick up a pack, they can avoid them and conserve resources for later. It is also used, along with the enter key, to proceed through the menu system and/or skip the intro sequence.

2f. Interface

The game’s interface is fairly minimal. The initial start screen displays the artistically rendered title of the game. The instructions are then displayed to the player in a separate screen, which also gives some information about the game’s premise.
The in-game heads-up display (HUD) is limited to a display of the player’s total ammo and the amount of ammo remaining before they must reload. This information is displayed in the bottom left corner of the screen, relatively out of the way of the player’s line of sight.
A message will also be displayed to the player in the top-left corner of the screen if they are on the same floor as the portal.

As the player loses health, the player sprite will redden to signify the damage. This redness will subside when the player regains health. This colorization effect will signify danger to the player, but will also not give them a precise amount of remaining health, thereby creating some suspense. It is also a non-intrusive way of showing the player’s health (as opposed to an onscreen health bar that might take up a lot of onscreen space).
[image: image4.png]Portal is on this floor!

Clip: 8
Ammo: 39

2g. Sound and music

Sound is critical to the game. Some sounds are fairly straightforward, including gunshots, reloading, and ammo/health pickup sounds. However, some sounds will signify danger to the player. For instance, a continuously repeating bass note in the background will increase in tempo and pitch when a monster is in the same room as the player. Since some rooms are very wide and a monster might not actually be onscreen, this allows the player to anticipate and prepare for attack. Similarly, the sounds made by a monster will increase as it nears the player, giving the player an added sense of proximity. Lastly, to help the player determine the rate of attack, a grunting sound is made by the monster when it damages the player.
Some ambient music is included as well. The player will notice songs playing in a select few of the rooms. Using a directional audio (3D sound) effect, the audio will appear to the player to be coming from beyond walls or other strange and impossible places. The music (including a jaunty Hungarian rag) will seem eerily out of place in the game world, thus causing the player to question where the music might be coming from and who is making it.
3. Development Specification

3a. Hardware

The game is being developed on a Dell Studio 7 laptop with 2 GB RAM and a 2.10 GHz Pentium Dual-Core CPU, as well as a laptop with 1.6 GHz dual-core processors and 2 GB RAM, both with 128 MB integrated graphics cards.
No special hardware is required to play the game. The player’s graphics card must be able to load textures as large as 800x600 pixels or smaller. Some players’ graphics cards will not be able to support post-effects such as the flash of a gunshot, but this will not make the game unplayable. Like most 2D games, the game is not too performance-intensive, and the minimum requirements should not be especially high.
3b. Software

The game is being developed using the Simple Fast Media Layer (SFML) 1.6 library. This library is a wrapper around OpenGL, designed specifically for 2D games. Though we are both developing on Windows, the library is cross-platform, and so the game is easily portable to Linux and Mac.

One reason we chose SFML over similar 2D libraries like SDL is for its hardware acceleration support, elegance, portability, support for various effects via the OpenGL Shading Language (GLSL), and 3D sound.
Additionally, Git is being used for version control, and Dropbox is being used to share source code and other resources between members of the team.
3c. Algorithm style

I. Monster spawning and hunting algorithms
Monsters are randomly assigned a speed within a restricted range. However, there is a pseudo-randomly generated (though improbable) chance that a monster will spawn with almost twice the speed of the typical monsters. These monsters will present a significantly higher threat to the player by taking them off guard with their quick movement, and by making it difficult for the player to avoid getting hit without running.

A small, set number of monsters are spawned initially and randomly throughout the house. This is to give the impression that they have been moving around awhile before the player arrived. The rest of the monsters, up until a set maximum, are spawned from the portal’s current location at a staggered rate. It is up to the player to find the portal and destroy it before the monsters can spawn at an overpoweringly high number.

Certain rooms will initially contain a few monsters, to create the impression that they have already spawned and begun walking around. Portals also spawn monsters at a constant rate, up to a certain maximum number of monsters.
Monsters have two distinct states of operation: wandering and hunting. Monsters are informed of the contents of the rooms directly to their left and right. If the monsters sense the player in either of these rooms, or if the monster is in the same room as the player, the monster enters hunt mode. In hunt mode, the monster will constantly change its direction of movement so that it is always moving toward the player. If the player is in the room to the left of the monster, the monster will move left; if the monster is in the same room as the player and the player is to the right of it, then the monster will move right, and so forth.
If a monster does not sense the player in any of the above ways, it will simply continue walking in whatever direction it is randomly assigned upon spawning or in the direction it last moved in due to sensing a target. Monsters move independently of their proximity to the player; a player may be on the complete opposite side of the map, but any given monster will continue to move during every iteration of the game loop.
II. Game state change algorithm
The play state of the game (i.e., how much progress the player has made) can be boiled down to the number of portals that have been closed. The Portal class keeps track of that state with the lives variable. This count is decremented every time the player closes the portal.
The game states (i.e., functions that represent different components of the game) are implemented as functions. In other words, the intro screen, game over screen, main game, etc. are each represented by their own function. Pointers to these functions are stored in a queue. Any state can push new states onto the queue during the course of its execution, and often will in order to dynamically line up the next state. The state at the front of the game queue is executed every iteration of the game loop until there are no states left, whereupon the game will exit. State functions will often call external helper functions to perform repetitive tasks.
III. Level flow algorithm
Each room of the mansion is essentially an independent unit, composed of a background (which may be stitched together from multiple backgrounds due to the limited texture size supported by some GPUs), and possibly containing monsters or items. These rooms are stored as objects containing the information about their backgrounds, as well as an array of pointers to their neighboring rooms (up, down, left, and right). In this way, the entire map is stored as a graph based on an adjacency list implementation. Links can easily be switched to change the layout of the map. A reference to each room, however, is stored in a hash table (in this case, the STL map container) for quick access by name for each room. This is often necessary for specifically referencing some rooms; for instance, when a portal spawns, we must make sure it does not do so in any of the stairwell rooms. Additionally, when memory is de-allocated after the game is quit, the map provides an easy way to iterate through the entire graph and delete the elements.
Only the room that the player is currently in will be loaded and displayed. Since memory and performance requirements are low, backgrounds are cached before gameplay begins to ensure stutter-free gameplay. While monsters may be operating in other rooms, those backgrounds are not displayed. Their dimensions may be used, however, for comparison purposes, such as checking to see if the monster has moved out of the boundary of the room.
Lastly, the player character, the portal, and all of the monsters keep a pointer to the room they are currently located in. By comparing these pointers, we can ensure that the player is only collision-checked against monsters that are in the same room, and that only monsters in the same room as the player are drawn. It also allows each object to have a reference to its neighboring rooms via the adjacency list of the room they’re in, allowing monsters to check for the player in nearby rooms and for the player and the monsters to move between rooms dynamically.
