CIS587 – Game Design & Implementation

Professor Maxim

Assignment #4 – Final Game

Design Document

Michael Westra

Abstract

DragonGem is a puzzle game based loosely on Tetris, Towers, Columns, and Dr. Mario. The story line is that you are the typical greedy adventurer that is trying to steal the dragon’s gems. The only problem is that the dragon has decided to give you a taste of your own medicine and throws handfuls of gems at you. You need to get three gems of the same color in a row in order to dissolve the gem’s spell. If the gems pile up too high, your character will be crushed and the game will be over.

Game Genre

This game fits into the general matching puzzle type of game. This includes games like Tetris, Columns, Dr. Mario, Towers, Memory, Connect-4, etc.

Game Appearance

See the sections “What is it like?”, “Interface Mockup”, and “User Guide” for more detail.

Product Specification

Production Team Description

· Lead Developer: Michael Westra

· Programming: Michael Westra

· Game Art: Michael Westra

· Game Description and storyline: Michael Westra

· Quality Assurance and Game Testing: Michael & Valerie Westra

Target Audience

The target audience is any game player who likes a small distraction from the blood soaked gore fests like Quake. It is also appropriate for children and adults. Basically anyone who loved Tetris should like this game.

Game Play Time

It is estimated that it should take upwards of 10-15 minutes to reach the faster levels of the game depending on the player’s skill. The play length (before becoming tiresome) should be equal with similar games in the genre (e.g. Tetris, Columns, or Dr. Mario).

Production Tools

The game will be developed using the Visual Studio 6.0 with DirectX and the Lamothe add-on libraries. Photoshop and PaintShop Pro have been used to prepare the graphics, and backgrounds. The sounds were taken from windows and the Lamothe CD. See section title “Development Environment” for more details.

User Guide

How to install the game

To install the game simply extract the zip file into a directory and execute the dragon.exe executable. The game requires that DirectX is installed (See Microsoft documentation for details) as well. The game has been tested to run under Windows98, but it currently does not run under Windows NT.

The archive file contains the following files:

	File
	Purpose

	Dragon.exe
	Main program executable

	Back.bmp
	Background image

	Blocks.bmp
	Block sprite map

	Pause.bmp
	Paused Game “overlay”

	Over.bmp
	Game Over “overlay”

	Level.wav
	Sound to play upon reaching a new level

	Gameover.wav
	Sound to play when game is over

	Remove.wav
	Sound to play when removing blocks

	Flip.wav
	Sound to play when flipping blocks

	Drop.wav
	Sound to play when dropping blocks

How to play the game

The game starts with the background screen shown below. The object is to place blocks (called gems) with color types adjacent in order to form matches. This causes the blocks to be removed from the playing field while scoring points. Blocks can be positioned by moving them left and right and also turning the block over (switching the top and bottom blocks).

[image: image1.jpg]-skull
(Dead 10,

The gems (blocks) always fall in random pairs. If three or more of any color are positioned along a row, column, or diagonal, the blocks are dispelled and the blocks above them drop down to fill in the open space. The blocks that fall into place can then match three in a row in a similar manner and this can go on for several iterations if the player is skilled in setting up the blocks.

The game is controlled using the keyboard using the following valid keys:

· Up: Rotates block by swapping the top and bottom gems.

· Left: Moves the block to the left one column.

· Right: Moves the block to the right one column.

· Down/Space: Drops the block onto the stack.

· Escape: Exits the game.

· P: Pauses the game.

· Space: Starts a new game once the player has lost the current game.

The blocks consist of two gems fused together that fall and must be positioned in unison (but they dissolve independently once at the bottom). Blocks come in two varieties: the standard colored blocks, which make up the majority and a few special blocks that occur infrequently. The following lists the various blocks and describes their purpose:

[image: image2.jpg]

Red: Red gem block.

[image: image3.jpg]

Blue: Blue gem block.

[image: image4.jpg]

Purple: Purple gem block.

[image: image5.jpg]

Orange: Orange gem block.

[image: image6.jpg]

Green: Green gem block.

[image: image7.jpg]

Cyan: Cyan gem block.

[image: image8.jpg]

Yellow: Yellow gem block.

[image: image9.jpg]

Skull: This is a normally unmatchable block (dead space on board). The only way to get rid of skulls is to match them with other skulls, the rainbow block, or blow them up with a bomb. This difficulty is that they tend to be rare and cause a purposeful disruption to the normal rhythm of the game.

[image: image10.jpg]

Rainbow: The rainbow gem matches any color when placed in its final position. This block matches all colors and special blocks simultaneously by nature. If placed with care this means that it can match several blocks in rows, columns, and diagonals giving a large reward if blocks in several of these directions match (and each direction can be in a different color).

[image: image11.jpg]

Bomb: The bomb block removes random number of blocks adjacent to it. This block can be quite useful or disruptive (depending on luck and keen placement). It can be helpful when used to remove unwanted blocks, but it can also backfire and remove blocks that have been setup to yield several matches.

Points are scored for dispelling blocks. The more blocks that are dispelled in one turn, the larger the score. The following chart gives an example:

	Number of Blocks
	Number of Points

	3
	90

	4
	160

	5
	250

	6
	360

	7
	490

	8
	640

	9
	810

Levels increase for every 2000 points that are earned. Two things happen at higher levels: the blocks fall at successively faster rates, and more skull blocks are given relative to the other special bonus blocks.

Game Specification

What is it like?

Play consists of falling gems (blocks) that the player may rotate and move left or right before they fall to the bottom of the screen. (If the player becomes bored, he/she can drop the gems to the bottom of the screen prematurely.) Gems consist of two gems of different colors fused together.

The magic that created the gems is dissolved if three gems of the same color are aligned at least three in a row. The gems above the dissolved gems then fall down to cover the hole created. The more gems that are dissolved at once, the higher the score achieved. Once enough points are scored, the player advances to the next level.

There are several special blocks that will appear from time to time. The skull gem occupies a space in the game board, but will not match with any of the other gems (except for itself). The rainbow gem has the special property that it will match with any color. Finally, the bomb gem will destroy a number of blocks directly around it.

See the section titled “User Guide” for more details and pictures.

Interface Mockup

The game board consists of the following elements:

· Main game board: The grayed transparent area on the left-hand side of the board consists of a 15x7 grid where the blocks are laid. This is where the main game action takes place.

· Score “orb”: The green-blue orb contains the player’s current score.

· Level “orb”: The pink orb contains the player’s current level of difficulty.

· Next “orb”: The blue orb contains a look at the next block that will fall.

· Pause banner: A “paused” banner is displayed in the center of the screen when the user hits “p” to pause the action.

· Game Over banner: A “game over” banner is displayed in the center of the screen when the blocks reach the top of the board (and a final block falls on them).

See the section on “How to Play the Game” for more details on the interface.

Storyboards & Character bibles

DragonGem is an action puzzle game, so there isn’t a complex story (or characters). The back-story describes how you are the typical adventurer in search of fame and fortune. You stumble onto a mythical dragon’s horde of treasure only to find it guarded by a gem dragon that doesn’t want to give up his hard won booty. The dragon attempts to get rid of this ‘pest’ by hurling precious gems at the adventurer. This is the ultimate irony since the very riches that the adventurer sought, may now spell his doom. The only way to survive is to align three of the same type of gem, which will dissolve the magic that created the gem. How long can the adventurer survive before being crushed under treasure beyond his wildest dreams? Play and find out…

Flowchart

The game progresses through the following flow during its execution:

1. Game Startup: The WinMain calls this routine to start up DirectX (Draw, Sound Input), load images, animation, sounds and other resources for the game.

2. Game Main: The main game loop is called for each frame. It contains the following elements:

a. Background: The background is loaded into the background of the next frame.

b. Input: The keyboard state is read.

c. Game Logic: Depending on the state (see the “Design Specification, Algorithms“ section), user input is processed to move blocks, the game board is checked for matches, or no processing takes place if the game is over or paused.

d. Draw: The next frame is finished by the dlib library Draw_Board() routine which draws all of the blocks including animations (see the “Design Specification, Interface Definitions" section). Lettering for the score and level is then drawn.

e. Flip: The frame is flipped into the primary display space and the next frame is displayed.

3. Wait: The game pauses until it is time to process the next frame.

4. Shutdown: When the user signals to quit, the shutdown routine is called, which destroys the resources created and shuts down the DirectX components.

Level/scene outlines

Higher levels will be achieved when sufficient points have been accumulated (every 2000). When higher levels are achieved, the blocks will speed-up and more skull blocks will appear (relative to rainbow and bomb blocks). Specifically, the block starts moving at 1 pixel per frame and will increase by one pixel per frame every other level. Also, the skull blocks start at 30% chance for a special block and increase one percent per level. One issue that has popped up was that the speed tended to increase somewhat unevenly. One solution to this would have been to implement the concept of pixels fallen per second or sequence of frames to give finer control over the speed of the falling block.

Future Direction

Several ideas for enhancements to be added based on project timings (added in DragonGem millennium edition):

· Addition of special animations for blocks while in place (e.g. eye blinking on skull, light reflection on colored blocks).

· Inclusion of additional special blocks (make use of gold blocks in the sprite file).

· Series of still background images showing dragon being “beaten-up” to be put in place when achieving various levels, until the player wins.

· Cool animated effects for dragon background (e.g. steam rising from noose, tossing blocks into game area, etc).

· Addition of high scores page.

· Use 24/32-bit color modes to reduce color jaggies.

· Support for windowed game modes.

· Support for head-to-head play between players or against computer.

· Better handling of speed increases between levels.

Design Specification

Implementation Details

The following sections will describe the details of the design for the game including the basic data structures, game states, and algorithms employed. Finally there is a section that describes the basic development environment and issues discovered during development.

Data Structures and interface Definitions

Block representation

Blocks are represented in three ways: as BOBs that can be animated and drawn, as integer values that contain the type of block in that location, and as boolean flags. All three are stored as two-dimensional arrays of fixed size (compile time defined).

The bob_matrix structure is the first of these. It contains a sequence of cloned BOBs that the drawing routine uses to draw each possible block position. These BOBs also support animation by having their animation flags set and their pointer stored in the animation list (described later).

The second structure is the game_matrix structure. It contains a set of integer values that represent the type of block in that location. The individual block types use one bit per type, so that when logically anded together the match checking routine can determine if two positions are matching blocks. The rainbow block has all of the other color’s bits set, so that it logically ands true for any color.

The third structure is the return_matrix. The match finding routine sets this matrix with boolean true values where blocks should be removed, so the animation can be set and the other blocks dropped in to fill them by another routine.

Falling Block Structure:

All of the details of the current and next blocks is stored in a struct called Falling_Block. It contains the current position of the block, the BOB used to draw the block, the type of blocks, and their relative position. Two static instances of this structure are created called curr_block and next_block. Curr_block is the currently falling block and next_block is the next block that is displayed in the next block “orb” on the screen.

Game States:

This section details the game states that the game can have during the game logic and drawing phases (see "FlowChart" section above). The game states and conditions for entrance/exit are:

1. GAME_BLOCK_FALLING: This is the initial state. Current block is falling at a constant rate. Player input is accepted during this period of time and appropriate action is taken to flip and move the block. The game leaves this state when the block collides with a block on the stack below it or the player drops the block and reenters this state when the next block begins its falling action.

2. GAME_BLOCK_DOWN: This state is reached when the block hits the top of the stack or the player initiates a drop. The game cements the block into the game matrix and calls the next state.

3. GAME_CHECK_MATRIX: This state is entered from the previous one and loops in this state while it determines that there are blocks remaining in a row. If blocks are in a row, it transitions to the GAME_ANIMATE state (instructing it to return when completed). After this it drops the remaining blocks into place and checks the matrix again. It returns to the GAME_BLOCK_FALLING state once there are no more matches to process.

4. GAME_ANIMATE: This is a catch-all state. It performs no game logic, but instructs the board drawing routines to cycle through the active animation list. It restores the state specified in the next_state field upon completion of the animation sequence.

5. GAME_PAUSED: The game is frozen in place. This state is entered/exited when the user hits the appropriate pause button. There is no game logic and the drawing engine simply re-renders the same scene for each frame.

6. GAME_DEAD: This occurs when a block has been placed above the top level. The player has lost and the game is over. The only way to exit the state is to hit the space key and begin a new game. The drawing function renders the last block scene and displays a “Game Over” overlay bitmap on top of it.

Animation Work List:

The list “curr_anim” contains a list of pointers to BOBs that are currently involved in an animation sequence. This structure is filled by the routines that check the game board and is used by the drawing routine to quickly identify the blocks to animate.

Dlib library interface

All of the more complex routines are stored as functions or macros in the dlib library (dlib.h and dlib.cpp). The library contains all of the static data that is used by the game and functions that directly access this data. (Note: it would be quite easy to move all of this data into a protected class and provide cleaner data encapsulation.) The interface contains the following functions:

· MAP_BLOCK: maps block column and row into x/y coordinates for drawing.

· UNMAP_BLOCK: maps x/y coordinates into row and column for block.

· ColPos_Curr_Block: Positions current block’s column.

· Init_Board: Function to initialize game board.

· Reset_Board: Function to reset board after game loss.

· Destroy_Board: Function to de-initialize game board...

· Draw_Board: Function to draw board and current block...

· Choose_Next_Block: Function to populate curr_block with randomly selected block (based on level)

· Check_Down_Curr_Block: Function to determine if current block has collided with bottom/another block

· Drop_Curr_Block: Function to drop/move current to its final place.

· Find_Remove_Blocks: Function to figure out which blocks can be removed (3-in-a-row)

· Init_Anim_Remove_Blocks: Function to setup animation sequence for removed blocks

· Drop_Remove_Blocks: Function to drop blocks by removing marked blocks.

· Calculate_Points: Function to determine how many points to award.

See the dlib header file for more details.

Pseudocode for Algorithms

Note: Only the more complicated algorithms are described in here.

Choosing the next block

First the game determines for each block if it will be a special block. There is a one in twenty chance for a special piece. If a special block is chosen, the game determines which type of special block it will be. The percentages for each type are initially 30% for a skull and equal chances for the other two types. With each level the chances of getting a skull block (relative to the other two types) increases by one percent. If the block type is an ordinary colored block (95% of the time), the color is randomly picked from the seven types. This process is then repeated for the other block.

· Foreach block

· Choose random number from 0 to 2000

· If number is less than 100, then

· choose a special block

· if number if is less than 30+#levels, then skull block

· if number is even then rainbow block

· otherwise bomb block

· otherwise choose number from 0 to 6 and map to color

· mapping to a block type occurs by bit shifting the number the specified number of times

Finding block matches

The first step is to zero out the return matrix. Then, for each position in the two dimensional matrix, positions in each direction are checked to determine if there are three blocks in a row. If there is, then the values in the return matrix are set. Matches of more than three in a row are handled when the algorithm checks successive blocks in the row for matches. If a bomb block exists, a 50% chance is given for each filled space adjacent to the block to be removed. Finally the number of marked blocks is counted and returned.

· Clear return matrix

· Foreach row and column

· Skip position if empty

· If bomb block,

· foreach adjacent block generate random number and mark block if number is even.

· Foreach adjacent block mark the block and adjacent blocks if they generate non-zero value when logically anded together.

· Count number of blocks marked in return matrix

Dropping blocks into place

This routine scans each row for filled positions that are above empty positions (formerly occupied) and swaps the positions if found. This is then repeated for each column.

· Foreach column

· Foreach row

· If return_matrix is marked true, clear out value in game_matrix

· Set empty_pos and filled_pos to zero

· While empty_pos and filled_pos are less than board height

· Increment filled_pos if position in current column is empty

· Increment empty_pos if position in current column is not empty.

· If empty_pos is greater than filled_pos, set filled_pos to one more than empty_pos.

· Swap the row positions in the game_matrix and bob_matrix.

Development Environment

Developer Studio v6.0 was used to compile the code. The compiler was set to generate fast code, but full optimization was disabled due to a bug in the compiler. (The compiler generated an internal error #1001.) The section of code that generated this error is commented extensively (around line 300 in dlib.cpp) and the documentation attributed this to the compiler generating invalid code due to optimization flags. I tried re-writing the routine several times, but was unable to remove this error.

All images were drawn in Photoshop using independent layers for screen elements. A custom palette (generated by Photoshop once and saved in a file) was applied to reduce the color depth to 8 bits and the files were exported to windows bitmap files. There was a bug with Photoshop’s bmp generation, which did not correctly populate the header field for the total image size. Lamothe’s Bitmap reader then allocates a zero length buffer and crashes the program. The solution to this problem was to export the images as TIFs from Photoshop and apply the palette and save them in PaintShopPro.

Note on image sources: The dragon background was taken from a windows desktop theme freely downloadable from http://www.themeworld.com. The colored blocks, globes, and game area border were taken from the free web graphics site http://www.iconbazaar.com/. The skull was taken from Diablo II (love those ‘flawless skull gems’) (see http://www.blizzard.com and http://www.diabloii.net/). The rest of the images (text, transparent game area, and elliptical highlights), pallet creation, and final assembly was done in Photoshop.

