

CIS 587

Design Document for Game
“Yummy?”

Project 4

SPRING 2000

Jianrong Huang

�Table Of Contents

� TOC \o "1-3" �1. Executive Summary	� GOTOBUTTON _Toc486694477 � PAGEREF _Toc486694477 �1��
1.1 game genre	� GOTOBUTTON _Toc486694478 � PAGEREF _Toc486694478 �1��
1.2 abstract of game story	� GOTOBUTTON _Toc486694479 � PAGEREF _Toc486694479 �1��
1.3 Game play and appearance	1
2. Product Specification	2
2.1 Production Team Description	2
2.2 Target Audience	2
2.3 Game play time	2
2.4 Production tools	2
3. User Guide	2
3.1 System Requirements	2
3.2 Installation	2
3.3 How to play	3
4. Game Specification	3
What is it like to play the game?	3
Interface mockup	3
Summary of story line	3
Storyboards	4
Character Bibles	4
Level or Scene Outline	5
Art Specification	5
Multimedia	5
5. Design Specification	5
5.1 Implementation details	5
5.2 Data structures and inter face definitions	� GOTOBUTTON _Toc486694508 � PAGEREF _Toc486694508 �6��
5.3 Pseudocode for algorithms	� GOTOBUTTON _Toc486694509 � PAGEREF _Toc486694509 �6��
5.4 Development environment	12

�

I. Executive Summary

1.1 Game Genre

The game is called Yummy designed for children ages 7 though 12. Its object is to earn as higher points as possible. Player will try to move a cat to catch right mice, which would make the player to earn some points or change health state, and avoid touching white mice, which would hurt cat’s health. This game is a nonviolent game with fun, cute and exciting. The overall art and music style of the game is realistic with humorous overtones.

1. 2 ABSTRACT OF GAME STORY

Once upon a time, there was a little cat, whose name is Tim. He lived in a garden of an old house. There is a big hole on the roof of the house. Tim lived with his mother in a box near the hole. This early morning, Tim woke up very early. He was very hungry, his mother had gone out to look for food. He raised his head and looked up to the big hole of the roof and wished some food will fall down from the hole.

Believe or not, a magical thing happened. Some food did float down from the hole from different directions. The foods include white mice, gray mice and red tailed mice that Tim had never ate before. Tim was very happy and he put his mouth toward the hole and caught all the foods that he could. Are all these foods Yummy? Yes. Tim’s wish to have food fall from the hole became true. He moved himself under the ground, caught and ate every thing he could. But, Tim felt a very funny feeling in his health whenever he ate a white mouse. His health was becoming worse! After ate 10 white mice, he would do nothing but sleeping. Tim also found his health would be better if he can catch a white mouse with red tail even though it was hard to be found and hard to be recognized. In order to catch as many as gray and read tailed mice and avoid touching white mouse, Tim has to keep moving and moving until he has not enough strength to get any mouse. If so, the game will be ended here.

1.3 Game play and appearance

According to the requirement of the story, all mice will fall down randomly from top of the board with different directions and different quantity. The player will push left, right, up and down key to move the cat to catch all right mice except white mice. Different sounds and music are used to match with all graphics and actions.

II. Product Specification

2.1 Production Team Description

In order to create the game, one person was used in the team. Jianrong Huang developed the characters, the screen graphics and the sound effects. He also learned how to write a game and implemented it with VC++ and DirectX. Total development time was four days, or 48 hours.

2.2 Target Audience

The game is created for children who love cat. Their ages are 7 through 12.

2.3 Game play time

The game can be played as many times as possible if the player could handle the different moving speed levels of both cat and mice. Also, the game will shelf the cat’s heath state to a new state when player moves the cat to a new game level.

The game will be as good as long as the technology to develop the game is valid. Two years is expected before an update. The game can be customized for personal favor.

2.4 Production tools

VC++ 6.0, DirectX6.0, and Paint tool with Windows 95.

III. User Guide

System Requirements

This game requires windows 95 or windows98 or NT 5.0, DirectX 6.0, a midi compatible sound card, a video card with at least 1 MB of memory, 32 MB of RAM, and 3 MB hard disk storage.

3.2 Installation

Create the directory: "c:\cat"
Copy "cat.zip" to the above directory.
Unzip all the files into the same directory.

3.3 How to play

Run "cat.exe".

The game is simple to play. Its object is to catch as many gray mice, red tailed mice as possible while avoiding touching any white mouse. Player uses the arrow keys on the key board to direct the cat.

IV. Game Specification

4.1 What is it like to play the game?

The game yummy is meant to be fun, but also exciting. The plot and characters are rather cute, and the game is very fun to play. Assuming the role of a cat is fun in itself, and if you don’t like violence, this is a nonviolent game. The cat is very hungry and will try his best to get all the right kinds of mice. The object is to earn as many points as possible while keep a good health state.

4.2 Interface mockup

The game opens with two instruction pages with a music track. Then it move to the scene with a cat in the bottom. The game consists of one scene for player and 100% of the screen shows the actual game play.

Player will use the arrow keys to move the cat around the screen. When the cat get or be touched by any mouse, the score or health state will be changed respectively. The highest health state is 100.

4.3 Summary of story line

Almost every kid loves cat. They feed cat, play with cat and protect cat. However, some foods are good for cat, some are not. The game is to let player to control the cat to catch the right mouse without causing his health problem. When the cat catches a right mouse, he will give out a happy sound, otherwise he will sound sadly.

4.4 Storyboards

When the game is first started, a screen will fade in and fade out with the words “Jiangrong Huang Presents . . .”. Next, a menu screen will appear with a 2D graphic with the title “Yummy?”. After 2 seconds, a new screen will appear that explains the story and game play.

After 10 seconds, the screen will go into screen play. Once the player reaches the goal, a new screen will appear notifying the player that the game is over.

�� 	� EMBED PBrush ��� 		� EMBED PBrush ���

�� � EMBED PBrush ��� � EMBED PBrush ���

 � EMBED PBrush ���

4.5 Character Bibles

Tim Cat:	He is a little cat and he found the food falling down from the big
 	hole of the house. He has a big mouth.
White Mouse:	Poor little white mice feeling sorry for themselves, and they have a
 	curse on them, if anyone eats them their health will be worse.
Gray Mouse:	Poor little gray mice feeling sorry for themselves, they have no
 	curse to protect them.
Red Tail Mouse:	Poor little white mice, with red tails feeling sorry for themselves,
	they are wanted to be eaten more than anything, they curse their 	cousins, the plain white mice, for making the red tailed mice want 	more than ever.

4.6 Level or Scene Outline

The game consists of five levels, each with different moving speed for both objects falling down and cat moving. The level will be automatically increased as the score earned by player. The level is divided based on the score 200, 500, 800, 1000 and 1200.

Score is initialed by 0. Health state is initialed by 100. They are counted respectively based on the following objects to be caught by the cat:

	Gray mice 	+10 for score;
	White mice 	-10 for health state;
	Red tail mice	+30 for score if heath state =100. Or, +10 for health state.

4.7 Art Specification

The overall art style of the game is realistic with humorous overtones. The game will feature 2D looking characters, and objects set in realistic settings.

4.8 Multimedia

Wave sounds and music are used.

V. Design Specification

5.1 Implementation details

The game has been designed for home PC use and an Arcade style game. The implementation will best be done for the home PC using Visual C++ and DirectX. Research still needs to be done to determine the best system for an Arcade System.

The characters and mice will be created as separate objects. The Character objects will have variables for number of appearance, transportation, and personality.

The Game Engine I in "Game Programming for Dummies" was used to create this game. Part of code was borrowed from 12_3.cpp and canman.cpp. Many existing functions were modified for use in this game.

5.2 Data structures and inter face definitions

��

5.3 Pseudocode for algorithms

The pseudocode for all algorithms is as following:

function WinMain
FUNCTION RETRUN TYPE int
INTERFACE OF FUNCTION
TYPE Class HINSTANCE
TYPE Class HINSTANCE
TYPE Class LPSTR
TYPE int
END

Fill window class structure
Register the window class by call RegisterClass(&winclass)
Create the window by call CreateWindow
ShowWindow created
UpdateWindow created

Initial game by call Game_Init()

Iterated infinitely until game failure
	IF player_score less 200, play at level one
	If player_score great then or equal 200 but less than 500, play at level two
	If player_score great then or equal 500 but less than 900, play at level three
	If player_score great then or equal 900 but less than 1200, play at level four
	If player_score great then or equal 1500, play at level five
	Play game by call Game_Main()
End interate
Shut down game by call Game_Shutdown()
End function WinMain

function GANE_Init
FUNCTION RETRUN TYPE int
INTERFACE OF FUNCTION Void

Variable define
TYPE int index
TYPE Char array length 80

Initialize directdraw by call DD_Init(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_BPP);
create the direct input object by call function DirectInputCreate
create a keyboard device by call CreateDevice
set cooperation level by call SetCooperativeLevel
set data format by call SetDataFormat
acquire the keyboard by call Acquire()
hide the mouse by call ShowCursor(FALSE)

Do introduction by call Do_Intro()
Load and create the background pictures by call Load_ Bitmap_File, Create_Bitmap
Release loaded files.
Create CAT object bob
Load CAT move frames in 8 directions, 4 frames each
Set CAT animation by call Set_Animation_BOB
Set CAT Animation Speed by call Set_Anim_Speed_BOB
Set CAT motion velocity by call Set_Vel_BOB
Set CAT initial position by call Set_Pos_BOB
init mice by call Init_Rocks()
init sound by call DSound_Init()
load sound music by call Load_Sound_Music()
Play sound by call DSound_Play
END function Game_Init

Function Collision_Test
Return type int
Interference
TYPE int first object’s x position
TYPE int first object’s y position
TYPE int first object’s widness
TYPE int first object’s length
TYPE int second object’s x position
TYPE int second object’s y position
TYPE int second object’s widness
TYPE int second object’s length
Get the radio of each object from interference parameter
Compute center of each object
Compute the distance of two objects
Test collect IF over lap of two objects then collision else no collision
End function Collision

Function Init_Rocks
Return type Void
Interference void
For a white mice, a gray mice and a red tail mice (rock [0], [1], [2])(
Create a bob
Load image file of white mice by call Load_Bitmap_File
Set animation speed by Set_Anim_Speed_BOB
Set mice move velocity according to play level by Set_Vel_BOB
Set initial position by Set_Pos_BOB
Set value for rocks[i].varsI[0]: white mice is 0, Gray mice is 1, reset tail mice is 2.
Set mice state as off
Unload image file
}
Copy created white mice, gray mice and red tail mice to other 30%, 60% and 10% rock's elements especially.
END Init_Rocks

Function Delete_Rocks
Return type void
Interference Void
	For (int index=0; index<MAX_ROCKS)
deletes all memory and surfaces related to the rocks by call Destroy_BOB(&rocks[index])
END Function Delete_Rocks

Function Move_Rocks
Return type void
Interference Void
for (int index=0; index<MAX_ROCKS; index ++) {
	if (rocks[index].state == ROCK_STATE_ON)
		call move_bob(rocks[index])
		if rock position out of screen set rocks[index].state off
		end if
	if (rocks[index].state == ROCK_STATE_ON) and rock collision with cat
		if collated with white mice, player life decrease 10
		if collated with gray mice, player score increase 10
		if collated with red tail mice, if player life is not full, increase life 10 otherwise increase score 30
	end check collision
}
determine player level
if player level is 1, add 1/6 new rock to the list
if player level is 2, add 1/5 new rock to the list
if player level is 3, add 1/4 new rock to the list
if player level is 4, add 1/2 new rock to the list
if player level is 5, add all new rock to the list
begin add rock
	 for (index=0; index<MAX_ROCKS; index ++) if (rocks[index].state == ROCK_STATE_OFF)
	Set animation speed by Set_Anim_Speed_BOB
Set mice move velocity according to play level by Set_Vel_BOB
Set initial position by Set_Pos_BOB
Set rock[index].state on
End for
END function Move_Rocks

Function Delete_Rocks
Return type void
Interference
Type int
Type int
Type int
Type int
Type int
	For (int index=0; index<MAX_ROCKS) if (rocks[index].state == ROCK_STATE_OFF)
	Set animation speed by Set_Anim_Speed_BOB
Set mice move velocity according to play level by Set_Vel_BOB
Set initial position by Set_Pos_BOB
Set mice type
Set rock[index].state on
	END for
END function Delete_Rocks

Function Draw_Rocks
Return type Void
Interference void
for (int index=0; index<MAX_ROCKS; index++) if (rocks[index].state == ROCK_STATE_OFF)
	Draw_Scaled_BOB
	Animate_BOB(&rocks[index])
END for
END Function Draw_Rocks

Function Draw_Rocks
Return type Void
Interference void

	
Function Do_Intro
Return type Void
Interference void
DD_Fill_Surface(lpddsback, 0);
DD_Fill_Surface(lpddsprimary, 0);
for interate from 0 to 256 Draw display text by Draw_Text_GDI
sleep a while
for interate from 156 to 1 Draw display text by Draw_Text_GDI
sleep a while
Load first display image
Display image
Unload image
Sleep a while

Load second display image
Display image
Unload image
Sleep a while

Load third display image
Display image
Unload image
Sleep a while

Load fourth display image
Display image
Unload image
Sleep a while

END function Do_Intro

Function Game_Shutdown
Return type Void
Interference void
kill CAT by call Destroy_BOB
delete all mice by call Delete_Rocks()
release keyboard by call
lpdikey->Unacquire()
lpdikey->Release()
lpdi->Release()
shutdown direct draw by DD_Shutdown()
unload sounds by DSound_Delete_All_Sounds()
shutdown direct sound by call DSound_Shutdown()
END function Game_Shutdown

Function Game_Main
Return type Void
Interference void
TYPE int
TYPE int
TYPE static int
start the timing clock
clear the drawing surface
draw the background reactor image
unlock the back buffer
get the keyboard data
reset motion flag
if direction of motion is right & up
	cat's x position + 10 + 2*player's level
	cat's y position - 10 - 2*player's level
	player_moving = 1
if direction of motion is left & up
	cat's x position - 10 - 2*player's level
	cat's y position - 10 - 2*player's level
	player_moving = 1
if direction of motion is right & down
	cat's x position + 10 + 2*player's level
	cat's y position + 10 + 2*player's level
	player_moving = 1
if direction of motion is left & down
	cat's x position - 10 - 2*player's level
	cat's y position + 10 + 2*player's level
	player_moving = 1
if direction of motion is right
	cat's x position + 10 + 2*player's level
	player_moving = 1
if direction of motion is left
	cat's x position - 10 - 2*player's level
	player_moving = 1
if direction of motion is down
	cat's y position + 10 + 2*player's level
	player_moving = 1
if direction of motion is up
	cat's y position - 10 - 2*player's level
	player_moving = 1
if (player_moving) Animate_BOB
if player life is 0 call game end sreen and end game
Draw_BOB
move the mice by call Move_Rocks()
draw the rocks by call Draw_Rocks();
END function Game_Main

Development environment

The game was developed with VC++ version 6.0, DirectX6, and the libraries on the LaMothe CD. The bitmaps were created with Paint tool with Windows 95 and the sounds were copied from LaMothe’s demos.
�
<End>

� PAGE �1�

CIS 587 ASSIGNMENT 4 DESIGN DOCUMENT

