
Assignment #4

Final Game Design

“911 - Space 2000”

[image: image1.wmf]
Michael D. Baker

CIS-587 Computer Game Design and Implementation

Wednesday, June 28, 2000
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

THE UNIVERSITY OF MICHIGAN-DEARBORN

Evergreen Road, Dearborn MI 48128-1491

Table of Contents

1Table of Contents

Executive Summary
4
Abstract of Game Story
4
Game Play and Appearance
4
Appearance of Play Area
4
Appearance of Game Elements
4
Game Play Physics
4
Game Play Goals & Obstacles
5
Game Scoring
5
Game Progression
5
Development Specification
5
Product Specification
6
Production Team
6
Target Audience
6
Game Play and Shelf Life
6
Production Tools
6
User Guide
8
Install Procedure
8
Instructions
8
Commands
8
Physics & Strategy Tips
9
Game Specification
11
What is the Game Play Like?
11
Summary of Story Line
13
Character / Location Bible
13
Flowcharting
14
Scene Outlines
15
Level Outline
15
Design Specification
17
Game Philosophy
17
Implementation Details
17
Graphic and Sound Sources
17
Graphic and Sound Technology
18
Language Used
18
Outside Code Sources
18
Animation Technique
18
Game Objects
19
Coding Style & Reasoning
19
Data Structures
20
Bitmap Files
20
Stellar Objects (asteroids & star)
20
Player Object
21
Torpedo Objects (also used for Astronaut!)
21
DirectX Structures Used
21
Interfaces
22
Pseudocode for Algorithms in 911 Space 2000
26
DirectX Initialization Algorithm
26
Bitmap to Surface Loader Algorithm
27
Game Object Initialization Algorithm
27
Main Game Loop Algorithm
28
Physics Calculations
30
Motion & Velocity
30
Gravity
30
Scoring
30
Destroying an asteroid
30
Picking up the astronaut
30
Destroying the astronaut with torpedo
30
Level Difficulty Calculation
30
Increasing difficulty with number of Asteroids
30
Decreasing difficulty with more time for Astronaut Rescue
30
Development Environment
31
IDE Used for Implementation
31
Scope
32
Discussion for purposes of Class Project
32
Game Features for Future Releases (911 Space 2000 the sequel)
32
Appendix A – Screen Shot of Game
33

Executive Summary

Abstract of Game Story

In the game “911 – Space 2000” the player takes on the role of a rescue starship captain in the hostile environment of a distant star system. His or her mission is to pilot a star ship to rescue free-floating astronauts and clear the interplanetary danger posed by an asteroid storm. Complicating matters is the limited air supply of the lost astronaut.

The game is a fast paced arcade style game with strategy elements. After either succeeding or failing to rescue the astronaut and clearing the asteroid field, the player will move to the next level where additional asteroids are added.

Game Play and Appearance

Appearance of Play Area

The game is a 2 – Dimensional, top down space simulation taking place on a large playing field consisting of a single screen. Movement of the player within the visible playing screen area will be relative to the fixed background. Once the player moves to the boundary of the screen, they will wrap around to the other side; in the fashion of many arcade games.

Appearance of Game Elements

 The appearance of the graphics will be sprites (bitmaps) displayed on a black background with a smattering of distant, fixed stars. The asteroids, astronaut, and even the player’s torpedoes (shots) will move relative to a fixed central star. Sizes, in addition to distance will not be to scale and will instead be kept small. This will be done to account for the size of the playing area as well as for playability reasons. All of these bodies to be seen on the screen at any given time, increasing the game pace and emphasizing the impression of a dynamic astrological system.

Game Play Physics

The game will include basic physics velocity, momentum, and gravity. This will affect the player’s ship, missiles, asteroids, and lost astronaut.

Game Play Goals & Obstacles

The emphasis of the game is to pilot the player’s ship through the star system, avoiding and eventually destroying asteroids to rescue the astronaut in time. For playability reasons, the lost astronaut will have an amount of air proportional to the number of asteroids for any given level. The greater the number of asteroids, the more air the astronaut will have. The player will have a limited number of missiles for use against asteroids at any given moment.

The level will be completed upon achieving the goals of picking up the astronaut and destroying all of the asteroids. Should the player not rescue the astronaut in time, the level will be complete when all of the asteroids are destroyed.

Game Scoring

The player will receive a score for each asteroid destroyed, which will be a fixed amount. The player will receive a score for each astronaut rescued by passing over them, although the value of the astronaut will increase with the level difficulty. Should the player accidentally shoot the astronaut (an easy thing when there are too many asteroids), then the player will be penalized. No bonus or penalty will be applied to the player score if the astronaut runs out of air. This scoring system should encourage players to want to rescue the astronaut, while taking care not to carelessly shoot everything that moves at the beginning of a level.

Game Progression

The game repeats until the player quits the game by pressing the escape key (ESC) or by being destroyed. Coming in contact with a star or asteroid can destroy the player’s ship. At the end of the game, the player score will be displayed.

The strategy of the game will require the player to make use of the gravity physics and planetary motion in order to rescue the astronaut. This will also apply to obstacle avoidance.

Development Specification

The game is designed for minimal systems and should run on a Pentium 400 or better with DirectX7.0. Disk space needed is 3 Megabytes. Ram needed is as per the Windows 95/98 operating systems, although 64 Megabytes is recommended. A sound card is also recommended, but not required.

Product Specification

Production Team

Role
Person

Game Designer
· Michael Baker

Programmer
· Michael Baker

Graphics Artist
· Andre LaMothe (although he doesn’t know it!)

· Michael Baker

Sound Effects
· Andre LaMothe

· Michael Baker

Documentation
· Michael Baker

Testing
· Michael Baker

· Stephanie Baker

Target Audience

The target audience is Upper Elementary (7 to 11) and older. It is hoped both male and female players will enjoy the game, but it is anticipated that the player base will be predominately male. The cause for this is the destructive nature of the game. To lessen the importance of destruction, the rescue element is given an equal importance as dealing with the asteroids.

Game Play and Shelf Life

The play for a typical game should be half of an hour to an hour. The anticipated shelf life is initially anticipated to be 1 month. With the low learning curve and short game play, it is hoped that “911 – Space 2000” will periodically be picked up and replayed as the customer grows tired of the bigger production (and longer playing) games.

Production Tools

The tools used for the development of “911 – Space 2000” will include:

· Windows98

· Microsoft Development Studio 6.0 (C++ compiler)

· Microsoft DirectX SDK 7.0

· Lemmy editors (vi for Windows)

· Microsoft Bitmap graphics editor

· Creative Labs Wave Studio sound editor

· Graphics and Sound files from Andre LaMothe’s “Tricks of the Windows Game Programming Guru’s” CD

· Sound files from “Windows 95 Sights & Sound” CD

User Guide

Install Procedure

To install the game for play:

1. Insert the installation floppy diskette into the computers A: drive

2. Open the start menu, and select the Run option.

3. Enter A:\setup.bat and press return.

4. The game will install itself into the “c:\games” directory.

5. Open the MyComputer icon and go to the “c:\games” directory

6. Select the compressed folder 911
7. Right mouse click on the folder

8. Select the Extract option

9. In the wizard dialog, select the next button

10. Select yes to the question about creating a directory, if asked.

11. When presented with the last dialog, press finish
12. Use MyComputer to go to the 911 directory and select the file 911Space2000.exe to play!

Instructions

Commands

Command
Description

Right Arrow Key
Rotates the starship clockwise

Left Arrow Key
Rotates the starship counter clockwise

Up Arrow Key
Fires the engines, adds to the velocity of the starship in the direction it’s facing.

Down Arrow Key
Computer controlled retrorockets. Will slow the starship down no matter what direction it’s facing.

Space Bar
Fires a single torpedo

Enter or Return Key
Used to transition to next level at end of current level

Physics & Strategy Tips

· The gravity well of the star affects everything in the game; the asteroids, the astronaut, the player’s ship, and even the torpedoes of the player! Sometimes, that straight shot isn’t so straight since the torpedo and asteroid might “turn a corner” when near the star.

· Nothing can exceed the speed of light. Essentially, all things have a common upper speed limit. Hitting that asteroid that’s speeding away from the player might not be possible if it’s going fast enough! Also, if the player is travelling at high speed a torpedo shot in the direction of motion won’t travel that far ahead since it may not even be able to get ahead of the player! Of course, this also means things can come at the ship only so fast…

· Torpedoes are limited in number. The ship can only launch up to 10 before having to take a few seconds to reload. The player needs to be conservative in shooting. There is nothing so frustrating as having fired them all off and then having none to deal with that asteroid about to hit you!

· The central star or the asteroids can not hurt the astronaut; he will pass over them. His only worry is a limited air supply and your torpedoes, which can blow him up!

· The player should try to use the main engines (UP arrow key) whenever possible since they are twice as powerful as the computer controlled retro-rockets (DOWN arrow key). The disadvantage is the player must turn the ship so it is flying backwards to slow down using the main engines. If fired when not flying backwards the ship will slow down, but will also start drifting off course! The retro-rockets will always slow the player down no matter what direction the ship faces (on board ship computer will handle corrections for the player). Unfortunately, these retro-rockets are only half as powerful as the main engines and hence take longer to slow the player down.

· The torpedoes don’t last forever. Actually, they last about 2 seconds, or about the amount of time for the torpedo to cover about half of the total playing area.

· The astronaut is an important part of the game and rescuing him is worth half the points of the entire level (he’s worth all the asteroids). If his air runs out, then the player gains no points, but also loses none. Shooting the astronaut is very bad and will cause the player’s score to be reduced by ¼ the total number of points for the level! If possible, rescue the astronaut as soon as possible because the path of the asteroids becomes more random over time as they are all pulled into different paths by the star!

Game Specification

What is the Game Play Like?

The play of the game is on the surface very much like an arcade game, but to excel at it the player must strategize the best approach using their position and gravitational pulls of the central star to their best advantage. The player must also take note of the position of other obstacles such as asteroids and how they will be affected by these same factors. The same is true for the player’s torpedoes (shots). Through all of this, the player must maneuver their ship to pass over the lost astronaut, who is also affected by the gravity, in order to pick them up in time.

The player’s score and the current level are always displayed, but more important is the astronaut’s air supply. This is displayed separately in the number of seconds remaining. As an aid to the player, the air supply text will start flashing when the air supply is less than 5 seconds.

The game will be fast paced and have a quick music score played in the background. To prevent this from becoming monotonous (i.e. annoying) a random selection will be made from a library of 3 or so music scores.

To prevent the game from being too easy, the asteroids will not be able to collide with the central star. Also, special exceptions will be made so they can not become trapped in the gravity field of the star (i.e. trapped within the star itself!). Their initial positions, rotations, and speed vectors is random.

In order to keep the rescue of the astronaut possible, he shall be immune from colliding with either the star or the asteroids. Additionally, the astronaut will have to have special exceptions so as to not be trapped in the center of the star. The initial position and speed vector of the astronaut will also be random.

When a level starts, the player will quickly need to make a choice between rescuing the astronaut immediately risking collisions, or shoot the asteroids risking the astronaut. The asteroids become an increasing danger as time passes and their trajectories become less and less predictable. The player must also take care about their position as they are constantly pulled into the star and asteroids cruising in from the edges of the screen are an ever-present danger.

Mock up of Interface

Summary of Story Line

The player is a starship captain assigned to rescue operations the Dogus Majorus star system. The system is plagued by periodic storms of asteroids making space travel in the region very dangerous. Other starships passing through the area have been destroyed and their crew forced to abandon ship. The player needs to eliminate these asteroids and rescue the crew of these doomed ships.

To complicate matters, the player must be concerned with the limitations of the crew’s astronaut suits: they have limited supplies of air. Also, there aren’t any other armed rescue ships available. There are no second chances should the player’s starship be destroyed!

Character / Location Bible

Character / Location
Description

The Star System
The Dogus Majorus star system, plagued by periodic storms of asteroids. The area is a bane to starship travel.

The Asteroids
Rocks in an unstable asteroid belt on the outer edges of the Dogus Majorus star system. Periodically several of these will be pulled from the belt and hurtle through the area around the star.

The Player’s Ship
An armed rescue ship sent to destroy the hazardous asteroids and rescue the lost astronauts.

The Astronauts / lost crew
The crewmembers of the doomed exploration ships of the Long Outer Space Exploration Rangers (LOSERs).

Flowcharting

Scene Outlines

The game consists of a few scenes:

1. Main Game Playing Scene

This screen contains the playing elements of the game. Essentially, the player, asteroids, torpedoes, astronaut, and central star. It will also contain text at the bottom of the screen showing the remaining air for the astronaut, player score, and game level. This is the scene the player will spend 95% of their time in. It will also contain sound effects and background music to create a sense of urgency in the player to rescue the astronaut and deal with the asteroids.

2. Level Complete Scene

This screen will only contain the animation for the central star and text for displaying the player’s score. It will also display text instructions for proceeding to the next level and wait until the player is ready to continue (by following instructions!). At the beginning of the scene an audio message about the level (mission) being completed will be played.

3. End Game Screen

This screen will contain the remaining elements of the game after the player ship has been destroyed. Additional text will be displayed just above the star (same location as the score text in Level Complete Scene) to indicate the game is over. An audio message will also be played indicating the game is over.

Level Outline

The difficulty of the game increases as the player completes levels. This is accomplished by adding one asteroid for each level completed, starting from a fixed number (3 asteroids @ level 1, 4 asteroids @ level 2, etc.). Additionally, the amount of time allocated to rescue the astronaut in, will be increased proportionally to the number of asteroids. Initially, when there are few asteroids the player needs to rescue the astronaut quickly. In later levels, the player will be able to focus on the asteroids more (as they will need to!). Each level will use the same playing scene (Main Game Playing Scene, above) and the background music will be randomly selected from a fixed set. This will further make a distinction between levels without creating color usability issues (as could be the case in levels with different colors).

Design Specification

Game Philosophy

911Space2000 is an arcade style game with elements of strategy. The main goal of the game is to rescue the astronaut, even though the majority of the player’s time is to avoid and destroy the asteroids, which pose the greatest danger. It is intended that the player use quick reflexes as well as consider the ever changing paths of all the astronaut, nearby asteroids, and their own ship as dictated by the rules of gravity.

Implementation Details

Graphic and Sound Sources

The game will make use of the graphics files available from other sources to reduce the development time of the game. These will still require manual modification to have a common color palette (which will be limited to 256 colors). Modification of these files will be kept to a minimum, although some modification is anticipated in order to preserve quality. The graphic sources are as follows:

Graphic
Source

Player Ship
Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”

Torpedo
Michael Baker

Asteroids (Modified)
Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”

Central Star (Modified)
Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”

Astronaut (Modified)
Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”

Main Screen Background
Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”

Splash Screen (Modified)
Jet Propulsion Laboratory Public Web Page

Sound files will also be used from other sources due to limited time and tools available for development. All sound effects and music files are from Andre LaMothe’s book “Tricks of the Windows Game Programming Gurus”, except for the one. The astronaut death sound is from the “Windows95 Sights & Sounds” library CD.

Graphic and Sound Technology

The technology used for implementation of the game is DirectX. This will leverage the team (my) knowledge of C++ and DirectX, from the CIS587 class.

Language Used

Due to the need for speed both in the program and development, as well as the requirement to use DirectX, the implementation language will be C++.

Outside Code Sources

In an effort to learn as much of DirectX as possible, the use of code modules from Andre LaMothe will be limited to low-level graphics routines to reduce “grunt” work. An exception for this approach will be made for the DirectSound and DirectMusic, due to the complexity of these technologies and the limited time.

Animation Technique

The animation technique used throughout the game will be double buffer blitting. DirectX graphic surfaces will be blitted to the back buffer and flipped at the end of an animation frame loop.

Most objects in the game will contain 2 animation sequences. One for the main animations, such as the asteroids rotating in space. Another for the explosion sequence. This will be true for the asteroids, player ship, and astronaut. No other objects can explode and on destruction (in game) they will simply not be blitted in subsequent frames.

Many of the animations will be shared between multiple objects. This is true for all of the asteroid animations. It is also true of the explosion and torpedo animations. To reduce the amount of space needed in video memory (not everyone has a 32 Megabyte video card!), surfaces in common animations will be shared. For the asteroid and torpedo animations, only the first object in the array will be responsible for managing the surfaces. Subsequent elements in the arrays (of asteroids and torpedoes, respectively) will contain arrays of pointers to those surfaces. For the explosion animations, a global array of surfaces will contain the data and all other objects will reference it. All objects will contain their own animation and frame counters.

Game Objects

All objects in the game will be implemented using C structures. This is in agreement with the philosophy of Andre LaMothe and prudence dictates that this be followed. Time does not allow for either adjusting his code to a more object oriented approach, nor does it allow for experimentation with the impact of such an approach on timing issues.

All objects (except the central star which is a fixture) will have 3 possible states. IS_ALIVE state indicates that the object is to be animated normally, have physics applied, and have collision detection applied. IS_EXPLODE state indicates that the alternative explosion animation is to be run, physics and collision detection are no longer applied. At the end of the explosion sequence, the state is changed to IS_DEAD. This latter state indicates that no processing on the object is to be done at all.

Coding Style & Reasoning

The implementation code for the game will be kept in a large single file, except for the library code used for the DirectSound and DirectMusic. The small size of the team (one) permits this deviation from normal programming practice.

The lack of experience programming with DirectX technology and the decision to learn as much as possible about it in the limited time frame allowed is the central reason for the use of a single large file. By using a single file, issues about scope and organization are minimized. Thus, more effort can be focused on the use of DirectX and the implementation of the game can more easily proceed in short phases.

Additionally, re-use of functions will be minimized. Effective use of modularization requires greater familiarity with the DirectX technology and game programming techniques. By using cut and paste within large functions, the code can be customized as needed and each implementation does not need to consider future use beyond the immediate use. A secondary benefit is the reduction of function calls will add speed to the code, adding a time safety buffer in the event calculations in the code take too long.

Data Structures

Bitmap Files

typedef struct BITMAP_FILE_TAG

{

BITMAPFILEHEADER bitmapfileheader; // contains the bmp header

BITMAPINFOHEADER bitmapinfoheader; // all the info

 // (including palette)

PALETTEENTRY palette[MAX_COLORS_PALETTE]; // store the palette here

UCHAR

*buffer; // pointer to bitmap!

}

BITMAP_FILE,

*BITMAP_FILE_PTR;
Stellar Objects (asteroids & star)

typedef struct FIXED_STELLAR_TYPE

{

 LPDIRECTDRAWSURFACE4 animation[MAX_NUM_ANIMATION]; // Animation frames

 int currFrame;

// curr Frame

 int counter;

// animation timer

 int animRate; // rate of iterations per frame

 // have to use floats to eliminate round err in gravity calcs...

 float rx, ry; // Real pos for Gravity Calc

 float vy, vx; // Real velocity for Gravity Calc

 float mass; // Mass of object for Gravity

 LPDIRECTDRAWSURFACE4 explode_animation[EXPLOSION_NUM_ANIM];

 int currExplosion;

// current index for explosion animation

 int objState;

// flag for object state (IS_ALIVE, IS_EXPLODE, IS_DEAD)

} STELLAR_OBJ,

 *STELLAR_OBJ_PTR;

Player Object

typedef struct PLAYER_OBJECT_TYPE

{

 LPDIRECTDRAWSURFACE4 ship_off_image[MAX_NUM_ANIMATION]; // ship no engines

 LPDIRECTDRAWSURFACE4 ship_on_image[MAX_NUM_ANIMATION]; // ship w/ engines

 int currDirection;

// current direction of ship (0-16)

 int currState;

// engines on or off flag

 float rx, ry;

// current position of ship on screen

 float vx, vy;

// current velocity (x,y) components

 LPDIRECTDRAWSURFACE4 explode_animation[EXPLOSION_NUM_ANIM];

 int currExplosion;

// current index for explosion animation

 int objState;

// flag for object state (IS_ALIVE, IS_EXPLODE, IS_DEAD)

} PLAYER_OBJECT,

 *PLAYER_PTR;

Torpedo Objects (also used for Astronaut!)

typedef struct TORPEDO_OBJECT_TYPE

{

 LPDIRECTDRAWSURFACE4 animation[EXPLOSION_NUM_ANIM];

 int currFrame;

// current index for animation

 int counter;

// counter used for timing delay between frames

 LPDIRECTDRAWSURFACE4 explode_animation[EXPLOSION_NUM_ANIM];

 int currExplosion;

// current index for explosion animation

 int objState;

// flag for object state (IS_ALIVE, IS_EXPLODE, IS_DEAD)

 float rx, ry;

// position of object on screen

 float vx, vy;

// velocity of object on screen

 int objMaxLife;

// counter used to time how long before changing the state of the object

} TORPEDO_OBJECT,

 *TORPEDO_PTR;
DirectX Structures Used

LPDIRECTDRAW

LPDIRECTDRAW4

LPDIRECTINPUT

LPDIRECTINPUTDEVICE

LPDIRECTDRAWSURFACE4

DDSURFACEDESC2

LPDIRECTDRAWPALETTE

LPDIRECTDRAWCLIPPER

PALETTEENTRY

DDBLTFX

DDSCAPS2

Structures for DirectMusic and DirectSound are not included as they are utilized in the library provide by Andre LaMothe.

Interfaces

Interface
Description

Game_World_Init();

Initializes main DirectX structures for display surface, backbuffer, sound, music, clipping, background, and splash screen display.

Arguments:

· none

Code contains original code and code taken from examples provided by Andre LaMothe.

Game_Objects_Load();

Loads the files used for DirectX objects. Includes sound, music, and game object animations.

Arguments:

· none

Code contains original code and code taken from examples provided by Andre LaMothe.

Game_Objects_Init();
Initializes the game object structures with non-DirectX values.

Arguments:

· flag for determining if initializing for a new game or new level

Code is original.

Load_Bitmap_File();
Loads the specified bitmap file into a dynamically allocated structure for holding it.

Arguments:

· string name of the file to load

Code is taken from examples provided by Andre LaMothe.

Unload_Bitmap_File();
Releases dynamically allocated memory associated with a bitmap file structure.

Arguments:

· pointer to the structure to release/free.

Code is taken from examples provided by Andre LaMothe.

Flip_Bitmap();
Inverts a bitmap in memory to counter common behavior of many graphic utilities.

Arguments:

· pointer to the structure containing the bitmap

· width of the bitmap

· height of the bitmap

Code is taken from examples provided by Andre LaMothe.

DisplayNextLevel();
Used to interrupt the normal processing of the main game loop to display level score information and wait for the player to signal they are ready to continue. Will call the game object initialization routine to generate the next level.

Arguments:

· none

Code is original.

Load_Angles()
Used to load the needed SIN() and COS() values into arrays for quick retrieval. Only angles possible for the player ship are loaded.

Arguments:

· none

Code is original, but based on examples provided by Andre LaMothe

Get_Clock();
Used to get the number of milliseconds from the system.

Arguments:

· none

Code is taken from examples provided by Andre LaMothe.

Start_Clock();
Used to get the number of milliseconds from the system and store the value in a global variable.

Arguments:

· none

Code is taken from examples provided by Andre LaMothe.

Wait_Clock();
Used to wait for a given number of milliseconds.

Arguments:

· amount of time to wait.

Code is taken from examples provided by Andre LaMothe.

Scan_Image_Bitmap();
Used to copy information from a bitmap structure into a DirectX Surface structure usable in animations.

Arguments:

· pointer to the bitmap structure

· pointer to be returned to the created DirectX Surface structure

· width of the bitmap to scan

· height of the bitmap to scan

· x index of the cell to scan from (assumes multi frame bitmap)

· y index of the cell to scan from (assumes multi frame bitmap)

· flag to indicate if cells are bordered by a 1 bit frame or not

Code is taken from examples provided by Andre LaMothe and modified for this application.

DDraw_Create_Surface();
Convenience function to create a DirectX Surface.

Arguments:

· desired width of the surface

· desired height of the surface

· memory flag to indicate system or video memory usage

· color key flag

Code is taken from examples provided by Andre LaMothe.

Ddraw_Draw_Surface();
Copies one DirectX Surface onto another.

Arguments:

· pointer to the DirectX Surface that is the source

· the x, y position to draw at

· the width and height of the source surface

· pointer to the DirectX Surface that is the destination

· flag for transparency

Code is taken from examples provided by Andre LaMothe.

Ddraw_Attach_Clipper();
Used to attach one or more clipper objects to a DirectX Surface. NOTE: this function contains a bug when used with the FAILED macro it always returns failed true!

Arguments:

· pointer to the DirectX Surface to attach clipper(s) to.

· The number of rectangles to be clipped.

· Array of rectangles defining the clipping areas

Code is taken from examples provided by Andre LaMothe.

Draw_Text_GDI();
Used to draw colored text at a location on a specified DirectX Surface.

Arguments:

· String containing text to be displayed

· X,Y position the text is to be displayed at on the Surface

· ColorRef structure defining the RGB color to use

· Pointer to the DirectX Surface to display on

Code is taken from examples provided by Andre LaMothe.

Game_Main();
Used to control the main loop of the game.

Arguments:

· Not used.

Prototype is taken from example provided by Andre LaMothe. All contents are original.

Game_Shutdown();
Used to free DirectX structures allocated in initializations routines.

Arguments:

· None

Code segments are taken from examples provided by Andre LaMothe.

WinMain();

WindowProc();
Required functions for MSWindows.

Code provided from examples by Andre LaMothe.

Pseudocode for Algorithms in 911 Space 2000

DirectX Initialization Algorithm

1. Create DirectX base object

2. Query DirectX base object for DirectX4 interface

3. Make Windows call to hide mouse cursor (not needed for DirectX, but fits here!)

4. Set cooperative level and display mode

5. Create a complex DirectX Surface for the primary screen and a back buffer for animations

6. Load a bitmap for splash screen and display it in primary surface

7. Load the color palette from the splash screen (is common to all bitmaps) and associate it with the primary surface

8. Wait 10 seconds for splash screen display

9. Load the bitmap for the background into the back buffer

10. Create and attach a DirectX Clipper object to the backbuffer surface

11. Initialize DirectSound using LaMothe library call

12. Initialize DirectMusic using LaMothe library call

13. Create DirectInput object

14. Create DirectInput device

15. Set DirectInput device cooperative level and data format

16. Acquire the DirectInput device

Bitmap to Surface Loader Algorithm

1. Load Bitmap

2. If Bitmap height is positive, Flip Bitmap

3. Copy Bitmap to Created DirectX Surface

4. Free the Bitmap

Game Object Initialization Algorithm

1. Stop all sounds and music

2. Initialize game variables common to new game and next level settings

3. Initialize game variables for either next level or new game as specified in flag parameter

4. Initialize star object mass, position, velocity, animation properties

5. Loop over all asteroids (up to max for array) and set position, velocity and animation properties. Position and velocity settings are random. Initial animation frame is also random.

6. Load Sin/Cos values for predefined angles

7. Initialize the player position, heading, velocity, state (engines off), animation properties

8. Initialize the torpedoes animation properties

9. Initialize the astronaut position, velocity, and animation properties. Position and velocity settings are random.

Main Game Loop Algorithm

1. Read the keyboard input device

2. Draw the game screen background onto the back buffer surface

3. Select animation frame for the star and blit onto the back buffer surface

4. If conditions for next level are reached, delay for a few seconds (allow player to verify objectives reached) before displaying next level screen & sound

5. Loop over all of the asteroids

6. if alive, perform physics and collision detection against player and all active torpedoes. Collision with player changes player state to exploding. Collision with torpedo changes asteroid state to exploding. Ensure asteroid does not exceed the maximum speed limit of game.

7. If asteroid is active, animate with normal sequence, using animation & frame counter unique for each asteroid!

8. Else if asteroid is exploding (hit with torpedo), animate with explosion sequence

9. If the asteroid is at the end of the explosion sequence, remove from game and increase player score.

10. End loop over asteroids

11. If player is active (alive)

12. Check keyboard state for firing of main engine or retrorocket. Set player object state accordingly. Read only every other iteration of main game loop to reduce keyboard sensitivity.

13. Check keyboard state for turning left or right. Set player direction accordingly. Read only every other iteration of main game loop to reduce keyboard sensitivity.

14. Perform physics calculations for player ship. Ensure player object does not exceed the maximum speed limit of game.

15. Perform collision detection against star object and astronaut object. Collision with star changes player state to explode. Collision with astronaut removes astronaut from game and increases player score.

16. Animate player based on direction value and state value. (if player explodes, get him on next iteration!)

17. Check keyboard state for firing torpedo. If so, add torpedo to game using position and velocity of player object as base values, adding torpedo velocity. Set life counter for torpedo.

18. Else if player is exploding

19. Perform explosion animation

20. If end of explosion animation reached, remove player object from game and change game state to being over.

21. Loop over all torpedoes

22. If torpedo is active (alive)

23. Check life counter of torpedo, if 0 remove torpedo from game, else decrement it

24. Perform physics calculations on torpedo. Ensure torpedo does not exceed speed limit for game.

25. Perform collision detection against the astronaut. If collision with astronaut remove him from game and decrease the player score.

26. Animate the torpedo

27. If astronaut is active (alive)

28. Check the life counter of astronaut, if 0 remove from game, else decrement it.

29. Perform physics calculations on astronaut. Ensure astronaut does not exceed speed limit for game.

30. Animate the astronaut.

31. Else if astronaut is exploding

32. Perform explosion animation

33. If end of explosion animation reached, remove the astronaut from the game

34. Display text for amount of time astronaut has left in life counter. Flash the text (random colors) if counter is less than 5 seconds.

35. Display text for level and score counters

36. If game is in game over state

37. Display flashing (random colors) text for game over and instructions to start new game.

38. Check for keyboard input to start new game

39. Flip the back buffer surface to the primary surface (finally!)

40. Wait to ensure frame rate of 30 frames per second.

Physics Calculations

Motion & Velocity

Position_new = Position_old + Velocity;

(for all moving objects)

Velocity_new = Velocity_old + thrust;

(for player ship)

Gravity

Velocity_new = Velocity_old + (Gconst * MassStar / dist^2)
(for all moving objects)

If(distance to star < radius of star) then gravity is set to 0

(prevents capture by star)

(of asteroids&astronaut)

Scoring

Destroying an asteroid

Add 10 points to player score

Picking up the astronaut

Add 10 points times number of asteroids for level to player score

Destroying the astronaut with torpedo

Subtract 5 points times number of asteroids for level from player score

Level Difficulty Calculation

Increasing difficulty with number of Asteroids

Number of starting asteroids for level = 2 asteroids + 1 asteroid / level

Decreasing difficulty with more time for Astronaut Rescue

Number of seconds astronaut has before exploding = 10 seconds + 10 seconds / level

Development Environment

IDE Used for Implementation

· Microsoft Visual C++ 6.0

· Microsoft DirectX 6.0

· Microsoft Bitmap Editor

· Microsoft Image Editor

· Creative Labs Wave Studio

Scope

Discussion for purposes of Class Project

The overall scope of the original game design exceeded the amount of time allotted by the class. To accommodate this, certain non-essential features were left out. Even so, they are useful for consideration of future releases of the game.

The table below indicates features that were implemented and those that are for future releases.

Game Features for Future Releases (911 Space 2000 the sequel)

Feature

Large playing area with scroll feature

Player Ship & fuel limitations

Asteroids which can be broken down with missiles

Home base, refueling, bonus scoring

Star System Map

Scenarios (non fixed astronauts)

Hostile UFOs w/ simple AI

Hostile UFOs w/ complex AI

Additional astronomical bodies, such as planets, comets, moons

Appendix A – Sample Mockup of Game Graphics

[image: image2.png]

Asteroids

Central Star

(Game Screen)

Player Destroys Asteroids, rescues Astronaut

Lost Astronaut

Player

Level: 1	Score:0

(Game Screen)

Player Destroys Asteroids, fails to rescue Astronaut

Intro Screen

With brief story background in scrolling text

(Game Screen)

Player with asteroids & astronaut

End Level Score Screen

(Game Screen)

Player Destroys Asteroids and shoots Astronaut

Astronaut Air Left: 24 sec

End Game Score Screen

(Game Screen)

Player hits asteroid or star, (gets killed)

Game increases the number of asteroids

(Game Title Screen)

911 SPACE 2000

CIS587 – spring 2000

by Michael Baker

Michael D. Baker Jr.
Page 33
06/28/00

_924334066.unknown

