Warbound

Final Project

Nicholas Zakhar

CIS 487/587

12-21-05

Overview

Story

The Great Arena at Cydes. For almost a century this massive coliseum has hosted fights and battles for the enjoyment of the greatest lords and the humblest peasants. Now in celebration of its hundredth year, the Arena is hosting a series of grand battles. Fighters and warriors from all the kingdoms are gathering to participate, and win the title of grand champion of Cydes.

From the Northern Kingdoms three warriors have banded together to fight and claim the arena prize. Garret, Baldur, and Sabra have joined in common cause to gain victory over the other warriors in the Great Arena.

Game play and Appearance

The game will feature a top down view of the battlefield. The player will move the three characters around the battlefield, trying to defeat the other fighters in the battle. The level is lost if all the characters die, and is won if all the player’s opponents are defeated.

The game will feature various terrain, ranging from forests and plains, to mountains.

At this time the game only features one level. Three were originally planned but had to be cut due to time and knowledge constraints. I hope that I will be able to add the later levels sometime in the future.

Development Specification

(Warbound will be developed using the DirectX 9 SDK.

(It will use a tiling engine with 2D graphics.

(Warbound will be programmed in C++ using the code provided by Andre LaMothe from Tricks of the Windows(Game Programming Gurus.

(Graphics will be gotten from the LaMothe CD, and from various websites.

(Sound and music will likewise be gotten from the LaMothe CD, and from various websites.

Product Specification

Production Team

The production “team” will consist of Nicholas Zakhar. He will be doing the design and programming for the game. Graphics, sound, music, and some code will be gotten from other sources. Code will be used from the CD provided with Tricks of the Windows(Game Programming Gurus, by Andre LaMothe. Graphics, sound, and music will also be taken from the LaMothe CD, as well as various websites.

Target Audience

Warbound should have a relatively wide audience. The game is a hybrid, tactical/RPG. So should have appeal to both RPG and tactical game fans. There are several similar games currently on the market with a loyal fan base, so Warbound should appeal to those players also. The game does have animated violence. So probably would not be appropriate for younger players.

Game Play

Warbound is a hybrid tactical/RPG. Players will control three characters, Garret, Baldur, and Sabra. Moving them across a battlefield and destroying the enemy units.

All three of the characters have four stats, Hit points, Attack, Defense, and Movement. Hit points determine how much life the character has. If it should go down to zero the character is dead. Attack is how much damage the unit can do when attacking. Defense is how much the unit can protect itself from an attack. Movement represents how many squares the unit can move in a given turn. These stats are raised every time the character goes up a level, and depending on which class the player chooses for that character.

Every time a character attacks an enemy, or successfully defends against an attack, the character will get experience points. All three characters will get experience if a unit is defeated. Once a character gains enough experience, that character will gain a level.

The map is made up of several different types of terrain. Including grass, plain, hills, forests, mountains, and water. Each terrain has a different amount of movement that is takes to move over that terrain. Grass and plains terrains have no movement penalty. Forests have a moderate movement penalty. Hills, and water have a high movement penalty. Mountains cannot be moved over.

Each type of terrain also provides a defensive bonus to the unit standing there. Grass, and plains provide no defense bonus. Forests provide a small defense bonus. Hills provide a moderate defense bonus. Water provides a negative defensive bonus.

Each turn the player can take various actions with the three characters. The player can Move the character, Attack with the character, or Defend. Each character can Move, and Attack or Defend. The Move must be done before the Attack or Defend action, however. The character will be able to move a certain amount depending on his movement stat and the terrain he is moving over. The character must be next to an enemy unit in order to Attack. Attacking will lower the hit points of the attacking and defending units. The amount of hit points lost will depend on the Attack stat of the attacker, the Defense stat of the Defender, any bonuses provided by the terrain, and any bonuses provided by Defending. Defending will give the character a slight bonus if attacked. If the character defends she will gain a small bonus to their Defense stat. This bonus stacks with the bonus provided by terrain, and stacks with itself. That is if the character does not move, and Defends again, the bonus will increase. This bonus can only increase three times, after the third Defend in a row the bonus does not increase.

The player will complete a level when all the enemy units are destroyed. And the player will lose if all three of his characters are killed.

Production Tools

Warbound will mainly be coded using Microsoft Visual Studio.net using the DirectX 9 SDK. Andre LaMothe’s Blitter Object (BOB) Engine from Tricks of the Windows(Game Programming Gurus will also be used.

Game Mechanics

Overview

Warbound is a turn-based tactical/RPG hybrid. The player and the computer take turns moving units across the game board. Attacking each other’s units, attempting to destroy them. The game board is made up of different terrains that effect the unit’s movement and defense. Units gain experience in battle, which increases their stats making them more powerful.

Camera Position

The camera is positioned above the battlefield. That is the player gets a view of the battlefield as if he were looking down at it from above. The battlefield is larger then can fit on the screen as one time. So the player can move the camera to the left, right, up, and down in order to see more of the battlefield.

User Interface Design

User Controls

The user controls the game using the arrow keys and the enter button. The arrow keys move the game curser around the screen. If the curser reaches the edge of the screen the map is moved to display more of the battleground. The curser stops moving at the edge of the game field.

If the user is over a friendly unit and hit the enter key, that unit is selected. The up and down arrow keys now move the menu options.

If the user selects “move” from the menu, the possible moves that the unit can make are displayed on the screen. The user can then move the curser over these squares and hit enter again to move the unit. The user cannot select the “move” option more then once in a turn for a particular unit.

If the user selects “attack” from the menu, the user again gains control of the curser. The user can then select a unit to attack. If she hits the enter key and the curser is over a unit, then that unit will be attacked. If the curser is not over a unit, then the attack will not happen.

If the user selects “defend” from the menu, the unit defends itself. It gains a bonus to it’s defense stat causing it to take less damage if attacked.

If the user selects “quit” then the game ends.

Screen Interface

The screen itself is divided up into four sections. The main section displays the game screen. All the units and the terrain that makeup the battlefield.

The second section is the unit information area. If the curser is over a unit in the game, all the information about that unit, name, hit points, attack, defense, etc. is displayed in this area.

The third section is the game menu. This section just has the different options that the player can do if selecting a unit: Move, Attack, Defend, And Quit.

The final section is the terrain information area. This area displays all the important information about whichever terrain the curser is currently on: name, movement penalty, defense bonus, etc.

[image: image1.png]

User Interface Picture

Replaying and Saving

There is no saving in the game. As the game currently only has one level, any save feature would be largely unnecessary. The player can quit at any time by hitting the “escape” key, or by selecting the “quit” option from the menu. When the level is over, when the player is defeated or is victorious, the player can hit any key to quit the game.

Control Summary

The user controls the game using the arrow keys and the enter button. The arrow keys move the game curser around the screen. If the curser reaches the edge of the screen the map is moved to display more of the battleground. The curser stops moving at the edge of the game field.

If the user is over a friendly unit and hit the enter key, that unit is selected. The up and down arrow keys now move the menu options.

If the user selects “move” from the menu, the possible moves that the unit can make are displayed on the screen. The user can then move the curser over these squares and hit enter again to move the unit. The user cannot select the “move” option more then once in a turn for a particular unit.

If the user selects “attack” from the menu, the user again gains control of the curser. The user can then select a unit to attack. If she hits the enter key and the curser is over a unit, then that unit will be attacked. If the curser is not over a unit, then the attack will not happen.

If the user selects “defend” from the menu, the unit defends itself. It gains a bonus to it’s defense stat causing it to take less damage if attacked.

If the user selects “quit” then the game ends.

Game Play Details

Warbound is a hybrid tactical/RPG. Players will control three characters, Garret, Baldur, and Sabra. Moving them across a battlefield and destroying the enemy units.

All three of the characters have four stats, Hit points, Attack, Defense, and Movement. Hit points determine how much life the character has. If it should go down to zero the character is dead. Attack is how much damage the unit can do when attacking. Defense is how much the unit can protect itself from an attack. Movement represents how many squares the unit can move in a given turn. These stats are raised every time the character goes up a level, and depending on which class the player chooses for that character.

Every time a character attacks an enemy, or successfully defends against an attack, the character will get experience points. All three characters will get experience if a unit is defeated. Once a character gains enough experience, that character will gain a level.

The map is made up of several different types of terrain. Including grass, plain, hills, forests, mountains, and water. Each terrain has a different amount of movement that is takes to move over that terrain. Grass and plains terrains have no movement penalty. Forests have a moderate movement penalty. Hills, and water have a high movement penalty. Mountains cannot be moved over.

Each type of terrain also provides a defensive bonus to the unit standing there. Grass, and plains provide no defense bonus. Forests provide a small defense bonus. Hills provide a moderate defense bonus. Water provides a negative defensive bonus.

Each turn the player can take various actions with the three characters. The player can Move the character, Attack with the character, or Defend. Each character can Move, and Attack or Defend. The Move must be done before the Attack or Defend action, however. The character will be able to move a certain amount depending on his movement stat and the terrain he is moving over. The character must be next to an enemy unit in order to Attack. Attacking will lower the hit points of the attacking and defending units. The amount of hit points lost will depend on the Attack stat of the attacker, the Defense stat of the Defender, any bonuses provided by the terrain, and any bonuses provided by Defending. Defending will give the character a slight bonus if attacked. If the character defends she will gain a small bonus to their Defense stat. This bonus stacks with the bonus provided by terrain, and stacks with itself. That is if the character does not move, and Defends again, the bonus will increase. This bonus can only increase three times, after the third Defend in a row the bonus does not increase.

The player will complete a level when all the enemy units are destroyed. And the player will lose if all three of his characters are killed.

Cut-Scenes and Storytelling

The game does not feature any cut-scenes, or major storytelling elements. I would like to add more story to the game in the future. In the form of cut-scenes, character interaction, etc. not to mention additional levels, but as I’ve stated before, time constraints wait for no man.

Level Summary

Warbound, in it’s current incarnation, only has one level. The player and the computer controlled units move across the battlefield and attempt to destroy each other. The player wins if she can defeat the 6 enemy units. The computer wins if it can defeat the 3 player units.

Artificial Intelligence

Opponent AI

All the computer-controlled units in the game are controlled by a simple AI. There is no scripting in the AI behavior except the patterns inherent to the AI algorithms themselves.

Motion and Pathfinding

Both the player and the computer can see the entire map at any time. So the player and computer can see where their opponent’s units are at every point in the game.

The computer uses a very simple algorithm to pick it’s moves. First it picks a unit and figures out all the possible places it can move. Then it evaluates each possible move and assigns the move a score. It then looks through the list of moves and finds the highest score and chooses that move.

The first step, generating a list of moves, is the simplest step. It uses the same function that is used to generate the player’s unit’s moves. These moves are stored so that they can be evaluated in the next step.

The second step, evaluating the moves, is the next step. The computer looks at the first move in the list, then figures out how far away the first player unit is to that square. Then it looks at the second player unit, and finds out how close that unit is to the square. It then chooses the better of the two scores. Finally it looks at the third player unit, and finds out how close that unit is to the square. Then it chooses the better of those two scores. This is repeated for all the possible moves. The “best” score, and “best” move is then selected.

X = absolute-value(player unit’s x coord) -

 absolute-value(proposed move’s x coord)

y = absolute-value(player unit’s y coord) -

 absolute-value(proposed move’s y coord)

score = 100 – (X + Y)

That is the basic algorithm to evaluating the possible moves. Other information is taken into account, however. The terrain the proposed move is on, as well as a small random value is also included in the score. The random value is included so that if two or more moves are equal then one is selected randomly.

There are several flaws with this algorithm though. The major flaw is that it does not take terrain into account. Units can not move through mountain terrain. The algorithm does not look more then one turn ahead so it can’t figure out if it’s going to move the unit into a square surrounded by mountains.

The algorithm basically finds the “shortest” path to the “closest” unit. The problem is that is doesn’t actually calculate a complete path. But rather it generates a score and moves the unit in the general direction of the unit. This is fine in most cases. If there happens to be mountains or other such obstacles in the way, the unit can get stuck.

Combat and Special Actions

Combat is evaluated simply. After the unit has moved, it checks all the squares next to it. If an enemy unit is in one of those squares it attacks. If there are no enemy units next to it, the unit defends.

The computer-controlled units use the same attack evaluation function as used by the player-controlled units. To choose a unit to attack the computer simply looks to see if there is an enemy unit in a square next to it. If it finds one it attacks it. If there is more then one unit in a square next to it, it attacks Garret first, then Sabra if Garret is not there, then Baldur if both Garret and Sabra are not next to it. This, of course, also leads to a problem, Garret is always attacked first then Sabra, then Baldur. This leads to units with fewer hit points then other units. Or rather, the same units with fewer hit points then the same other units.

If there are no units next to the unit that has just moved, the unit Defends. This is the only other action it can take. So it is the default alternative to attacking.

Game Elements

game_unit – game_unit is a struct that is used to hold all the various information pertaining to each unit in the game

name – the unit’s name

cclass – the unit’s current class (not used)

fighter_level
- the levels of fighter the unit has

ranger_level – the levels of ranger the unit has (not used)

horsemen_level – the levels of ranger the unit has (not used)

current_HP – the unit’s current hit points

defense_bonus – the unit’s defense bonus from “defend” actions

HP – the unit’s max hit points

Attack – the unit’s attack stat

Defense - the unit’s defense stat

Movement – how much the unit can move

XP – the unit’s current experience

next_level – how much experience the unit needs to gain a level

turn_done – flag to see if the unit’s turn is done

move_done – flag to see if the unit’s has moved

These are all the game_units created in the game.

Garretinfo 1st player unit

Sabrainfo 2nd player unit

Baldurinfo 3rd player unit

Boss main boss unit

Minion1 1st enemy unit

Minion2 2nd enemy unit

Minion3 3rd enemy unit

Minion4 4th enemy unit

Minion5 5th enemy unit
world_x – this is the x-coord of the current position of the top-left corner of the screen.
world_y – this is the y-coord of the current position of the top-left corner f the screen.

curser_x – this is the x-coord of the curser

curser_y – this is the y-coord of the curser

curserindex_x – these 2 variables store the index

curserindex_y – of the curser (x,y)

curserflag – if set, then the player can move the curser
canmoveflag – if set then the game can move the selected unit
attackflag – if set then the game can attack
victoryflag – if set then the player has won
defeatflag – if set then the player has lost

world – This is a 2 dimensional array that stores the terrain map for the game. Every value in it corresponds to a specific type of terrain.

unit_x – These are arrays that store the locations of

unit_y – all the units on the map.

move_x – These are arrays that store all the possible

move_y – moves that a unit can make

move_index – this stores the location of the next value that can be put in the above 2 arrays

BOB – These are all the BOBs created for the game.

textures texture memory

curser the curser

garret 1st character

garret_ranger 1st character as ranger

garret_horsemen 1st character as horsemen

sabra 2nd character

sabra_ranger 2nd character as ranger

sabra_horsemen 2nd character as horsemen

baldur 3rd character

baldur_ranger 3rd character as ranger

baldur_horsemen 3rd character as horsemen

enemyboss main enemy

enemyminion other enemies

victory victory message

defeat defeat message

These are the index variables for the various sound and music files.

music

battle_sound

victory_sound

defeat_sound

move_sound

defend_sound

Functions

These are the various functions created for use in the game.

Setup() - set initial unit and game values

Unit_Movement(int,int) - sets squares for movement

Recusive_Move(int,int,int) - recursively sets squares for movement

Attackfunction(game_unit,game_unit,float) - resolves the attack actions

AI_Move(int&,int&) - resolves the AI moves

Add_XP(game_unit,game_unit,int) - adds xp and levels to units as needed

Character Bibles

Garret

[image: image13.jpg]L B T

Py RRR YRy POYRTY YR IY I O9 1)

Hyi g
Garret Move el
Levels: Fighter: 1 Normal Movement
Hit Points: [100]/[100] A
Attack: Defend

Defense: [10] +[0] Defend bonus +0 Defense Bonus

Movement: [4]
Experence: [0] / [100]

Quit

Player unit – This is the first of the player’s units. Starts the game at level 1.

Sabra

[image: image2.png]

Player unit – This is the second of the player’s units. Starts the game at level 1.

Baldur

[image: image3.png]=/

P’

Player unit – This is the third of the player’s units.

Starts the game at level 1.

Morgen

[image: image4.png]

Enemy unit – This is the main, most powerful, enemy unit. Starts the game at level 5.

Solder

[image: image5.png]

Enemy unit – These are the main enemy units in the game. There are 5, each of which start the game at level 2 or 3.

Terrain

Walls

[image: image6.png]

This terrain surrounds the map. It is impassable, and provides a border to the map.

Grass

[image: image7.png]

No movement penalty

No defense bonus

Water

[image: image8.png]

High movement penalty

Negative defense bonus

Plains

[image: image9.png]

No movement penalty

No defense bonus

Forest

[image: image10.png]YRR

Small movement penalty

Small defense bonus

Mountains

[image: image11.png]

Impassible

Hills

[image: image12.png]

High movement penalty

High defense bonus

Story Overview

The Great Arena at Cydes. For almost a century this massive coliseum has hosted fights and battles for the enjoyment of the greatest lords and the humblest peasants. Now in celebration of its hundredth year, the Arena is hosting a series of grand battles. Fighters and warriors from all the kingdoms are gathering to participate, and win the title of grand champion of Cydes.

From the Northern Kingdoms three warriors have banded together to fight and claim the arena prize. Garret, Baldur, and Sabra have joined in common cause to gain victory over the other warriors in the Great Arena.

The game follows the three warriors Garret, Baldur, and Sabra as they fight their way to victory in the Great Arena. If the player can complete these challenges then they gain the title of Arena Champion and complete the game.

Game Progression

The game progression in Warbound is simple. The player and the computer alternate turns moving their units. This continues until all of the player’s units are destroyed, in which case the player loses. Or all of the computer’s units are destroyed, in which case the player wins.

This simple game progression represents the fact that the game only has one level in it. Originally three levels were planned but I wasn’t able to finish it in the time allotted for the project.

Game Turn Flowchart

This flowchart represents all the various actions that a unit can take.

Future Improvements

As I’ve said several times in this document. I was unable to include a lot of the things in the game that I had planned. This was due to several reasons, the biggest simply not having enough time to include all the features and levels that I originally wanted to. I also simply don’t know how to do certain of the things that I want to do. I’ll need to research and figure out how to do more.

That being said I thought I’d list some of the things that I’d like to see improved upon in the game. Hopefully I’ll get another opportunity to return to the game and “complete” it. Maybe in CIS 558. (hint, hint…)

AI Improvement

As I stated in the AI section, there are many problems with the Artificial Intelligence in the game as it stands. I’d like to add a true path finding algorithm to the game. As well as a better way to evaluate which characters to attack. I’d also like to find a way to get all the computer-controlled units to “work together” if possible.

Improve level and class features
My original design of the game included multiple character classes for the player and computer units. This never got implemented mainly due to time. There is actually code remnants in the current game that reflect this feature. I didn’t remove them because they are not a major hindrance in the code, and I hope to add the full feature in later.

Multiple Levels

I had originally planned on having three levels in the game. That, however, quickly proved to be impossible. I simply ran out of time and couldn’t add them. I hope to add them in the future.

Story

The game has the very basic bare bones outline of a story. I was originally hoping that I’d have time to flush out the story a bit more. Maybe add some character interaction that takes place outside of just pure combat.

Lessons Learned

Time is NOT on your side! Deadlines always come up far faster then you expect. Sadly I think that I relearn this lesson with every major project that I do.

Globals are your friends. Global variables are not the horrible enemies that most programmers are taught. They are in fact quite useful.

…Dangerous friends. Having said that, global variables are also very dangerous, I rediscovered to my dismay. That whole unlimited scope thing is infinitely useful… and infinitely dangerous.

Multidimensional arrays are the tool of the devil! They are EVIL and should never have been implemented! I had to rewrite at least a third of my program, because 2D arrays would have proved to very useful. The only use I got out of them was to learn that they are NEVER to be used!

Bibliography

LaMothe, Andre, Tricks of the Windows Game Programming Gurus 2nd ed. Indianapolis, IN: Sams Publications, 2002.

LaMothe Blitter Object (BOB) engine.

Player Turn

Computer Turn

Player Victory

Player Defeat

Game Starts

Game Ends

Quit

End Turn

Defend

Attack

Move

Character Selected

_1196603509

_1196604088

_1196604161

_1196604200

_1196604233

_1196604128

_1196603713

_1196604052

_1196603589

_1196603349.psd

_1196603436

_1196603161.psd

