Ordnance

By Charlie Cross

CIS 487 Design Document

11-15-04

Overview
Story
2420 AD:

The Feudal Legion, an outlaw organization, is laying siege to Earth. As a last resort, the Earth Defense council sends out the heavy cruiser U.S.S. Reckoning to draw away the attacking forces by sallying out. The cruiser will attempt to launch a counterattack on the Legion at their headquarters, an outpost orbiting Phobos.
You are a turret gunner stationed on deck B-6 aft. Your mission is to preserve the Reckoning’s hull integrity at all cost. Destroy the Feudal Legion’s waves of attackers and eliminate their headquarters. Good luck!
Development Specification

· Ordnance will be developed using the DirectX 8.1 SDK. It will feature 2D graphics with changing backgrounds.

· There will be three “chapters” consisting of 20+ scenes total.
· The programming will be done in C++ and use a heavily modified version of Andre LaMothe’s Blitter Object (BOB) Engine.

· The sound will mostly be used from LaMothe’s sound library.

· The music will be original compositions by Charlie Cross.

· Estimated Implementation Time: 4 Weeks

Product Specification
Production Team Description

· Programming: Charlie Cross

The programmer will be responsible for implementing the game logic and bringing the artwork and sound together in a cohesive presentation.
· Artwork: Charlie Cross

The artwork will be primarily borrowed from Andre LaMothe’s sample content. However, the artist will be responsible for modifying the existing artwork to make the content suitable for the game.

· Animation: Charlie Cross

The animations are constructed from various borrowed artwork, bitmaps will be spliced together to form cohesive animations.

· Sound/Music: Charlie Cross

The sound director will be responsible for composing the musical score for the game as well as managing, modifying, or creating any sounds used in the game.

Target Audience

The ideal audience for Ordnance should be a reasonably wide age range. The game contains minimal violence other than destruction of realistic objects, so the content should be suitable for ages 5 and above. The game does not cater to the highly experienced or skilled gamer, as its simplistic dimensions will not provide a significant challenge to the hardcore enthusiast. However, the presentation and flow of the action sequences should be reasonably challenging and entertaining for casual game play.
Game Play

The game will be played from a constant side view perspective of the ship. The player will be able to aim the turret left or right and fire at enemy objects. The challenge of the game will be for the player to position and manipulate the turret in such a way that the number of enemy objects that hit the surface is minimized.

There is a shield level that starts at 100% each game. If an object hits the surface, the shield level is deducted. The ship also has a hull rating (100 is the maximum) If the shield level reaches zero, objects making contact will deduct the hull rating. If the hull rating reaches zero, the cruiser will be destroyed and the player will lose.

The shield level will slowly recharge throughout the game at a certain rate. It will not go above 100%. The cannon and the shields draw from the same energy reserve, so the rate at which the player fires the cannon affects the recharge rate. For example, if the player is using the turret minimally, the recharge rate will be higher, but if the player is holding the button down, this rate will be much slower. Hull damage is permanent and the hull rating does not recharge.
To win the game, the player must survive the entire sequence of events that occur in the game. The player will experience a series of challenging battles, and finally reach the final objective. Once the final base is destroyed, the player wins the game.

One of the primary features of the game will be the presentation. The goal of this design is to make the player feel motivated to survive by providing an epic game experience. The music will be designed to precisely accompany the action on the screen. The enemy ships should appear in interesting and/or artistic patterns that accompany the music and make the experience memorable for the player. The key to surviving Ordnance will be the player’s memorization skills and sheer reflexes.
Production Tools
The core game programming will be done using Microsoft Visual Studio.net 2003. The program will utilize the DirectX 8.1 API and Andre LaMothe’s Blitter Object (BOB) Engine.

The music will be composed using Melody Assistant v7.1. This program lets users create musical scores and export them to wave formats to be used in other programs.
Game Mechanics
Overview
The entire game takes place in outer space, beginning in low Earth orbit and ending in orbit around Mars. The player views the turret placed on the Heavy Cruiser U.S.S. Reckoning and the stars and typical space settings surrounding it. The game will combine the intense action of shooting the objects with accompanying music to create a tense, anticipated atmosphere that gives the player a feeling of increasing tension and excitement. At times the number of enemies will become almost overwhelming to the player, and the frantic action and music will create a sensation of great excitement.
Camera Position

The camera is positioned on a side view of the ship, facing your turret. The player sees the turret and surrounding objects. Between chapters 1&2, and between chapters 2&3, the camera will appear to “shake” as the ship enters and exits hyperspace.
Interface and Control Summary
The game will use a very simple interface which can be broken down into two categories: HUD objects and user controls:
HUD objects

· Shield Indicator: The shield indicator shows the player the current level of the shields. It is placed in the lower center of the screen.
· Hull Integrity Indicator: Like the shield indicator, only it shows the current hull integrity. It is placed in the lower right corner.
· Score: This will display the user’s score in the lower left corner.
User Controls

Title, story, and victory, screen controls:

· Escape key: Quits program

· Spacebar: Advanced to next story screen/game.

In game controls:
· Left keyboard button: Moves turret to the left.

· Right keyboard button: Moves turret to the right.

· Spacebar: Fires the turret weapon.

· Right Alt: Charges the turret weapon.

Game over screen controls:

· Escape key: Return to title screen.

· Spacebar: Reload last level.
· Right Alt: Reload last level, with cheat option.
Replaying and Saving
As described in the interface section, if the player loses, he/she will be able to restart the game at the beginning of the last level played. The player can also return to the main menu and choose to restart the game. If the player selects this or exits the game, he/she will have to start from the beginning of the game the next time it is played.

Game play

As a turret gunner on the U.S.S. Reckoning the player will face waves of enemy ships. The game is laid out in 2-D with the player-controlled turret in the bottom center. The turret is aimed using the left and right keyboard buttons, and fired using the spacebar. There is also a charge cannon that allows the turret to charge up a larger shot. The goal of the game is to prevent enemy ships and other objects on the screen (bombs and the like) from reaching the ship. If an object reaches the surface, the ship will lose a percentage of its shields. If the shield level reaches zero, the ship will begin losing hull integrity rapidly. If the hull value reaches zero, the ship will be destroyed and the player will lose the game. The shields recharge slowly, so the player will be rewarded for long stretches of skillful play.

The game follows a linear scripted sequence of encounters with enemy forces, following the Reckoning’s mission from Earth to the Mars station. If the player survives this sequence of events, then the Feudal Legion’s space station is destroyed and the player wins the game.

The game uses lighting effects such as flashes, or blue/red tints from planetary reflection. There are also visual effects such as shaking cameras, and warping stars as the ship enters hyperspace.

Cut Scenes and Storytelling
Ordnance does not contain cut scenes, but there are seamless transitions between levels. There are some expository screens prior to the first level, and after that, there is nothing but game play until the victory screen.

· Between Chapters 1 and 2 the ship will enter hyperspace for a short visual treat to the player.

· Between Chapters 2 and 3 the ship will exit hyperspace in a similar fashion.

· After the station is destroyed, the player will receive a victory screen congratulating him/her on a job well done.
Level Summary
The game will be split into three chapters. Each chapter will take place in a certain location at a certain time in the Reckoning’s journey.

· Chapter One – Blockade Run: This is the opening chapter in which the Reckoning is attempting to run the Legion’s naval blockade surrounding the Earth. Once the blockade is cleared, the hyperspeed engines can be engaged and course set to Mars. The music will feature the main Ordnance theme and reach a climax at the final encounter with a large boarding assault vehicle.
· Chapter Two – Ordnance: This chapter involves the Reckoning’s journey to Mars at top speed. The cruiser is being pursued by Legion forces and will have to fight them off while maintaining its course. The stars and other objects in the background will appear to be moving very quickly. The music will be a new theme that will be incorporated into the original theme later. The chapter will end with a similar boss battle to the first chapter, only the player will also have to contend with a flurry of kamikaze fighters.

· Chapter Three – The Day of Reckoning: The final chapter is the assault on the Phobos Main Station. The Legion will throw any forces it can muster against you and attempt to destroy the Reckoning. The player must survive long enough to draw enough Legion forces away from Earth to lift the siege. The final boss is the Phobos Main Station, the music will be a recapitulation of the original theme, and will build throughout the chapter towards the final destruction of the station.

Artificial Intelligence
Motion and Pathfinding
Motion of enemy objects is set by program’s the scripting module. At certain frames the program sets various enemy objects to a specific position, velocity, and acceleration value. The main program then processes the enemy objects and sets them in motion as specified.
Position of object= position of object last frame + velocity of object + acceleration

There are, however, many interesting patterns that can be created from this simple mechanic:

· Crossover:

The objects are set on opposite sides of the screen and set with accelerations toward each other. The objects will cross over.

· Parabolic trajectory:

The objects are given acceleration values in a certain direction that causes the path of motion to be parabolic in nature.

· Oscillations:

The acceleration of an object is set to always point toward an equilibrium point. Thus the enemy object oscillates about that point, creating a wavelike effect.

· Formation flying:

The objects are set to specific position intervals to simulate enemies flying in a formation.

· Kamikaze turning.

Kamikaze fighters are unique in the sense that they can face in any direction. The kamikaze fighter processor will evaluate the object’s current trajectory and select the appropriate frame to display reflecting that trajectory.

Special Actions
Two particular enemies perform special actions. These are the large assault corvette and the station.

Large Assault Corvette: Releases bombs at intervals. As the health of the corvette decreases, the rate at which the bombs are released increases as the enemy fights desperately for its life.

The corvette also releases kamikaze fighters at a specific point in the game.

Phobos Main Station: The station releases kamikaze fighters, assault vehicles, and bombs at intervals. Like the corvette, this rate increases as the station’s health decreases. The station also may summon heavy bombers to defend it.

Combat
Combat in the game is simple. If the player hits an assault vehicle, bomb, or kamikaze fighter, they are destroyed. If the player hits a heavy bomber, a large corvette, or the station, the health of the enemy is reduced by 1 point. If the health of the object reaches zero, the object is destroyed. On occasions, the destruction is delayed (such as the end of chapter 1) for production value and aesthetics.

If the player is hit by an object, a certain degree of damage is applied, reducing shields.

The specific values are described in the table:

	Enemy type
	Default hit points
	Damage given

	Assault
	1
	6

	Bomb
	1
	2.8

	Kamikaze
	1
	1.8

	Large Corvette 1
	180
	0

	Large Corvette 2
	100
	0

	Station
	370
	0

	Heavy Bomber (1&2)
	4
	0

	Heavy Bomber (3)
	6
	0

Game Elements

Data Elements:

Frame: the frame number used for scripting
Score: The player's score
HUD related variables:
Shield : The player’s shield level
Hull :
 The player’s hull level
Recharge_rate: The rate per frame at which the shield increases.
Charge cannon related variables

charging_last_frame: indicates whether the player was charging the cannon the previous frames.
charge_size: Indicates the size (based on the length) of the charge.
charge_counter: A frame counter used to increment the size of the charge.
kickback effect variables

cannon_frame_delay:

frame kickback delay

kickx, kicky:

kickback directions

kickback:

 indicates kickback last frame
Shaking effect variables
Shaking:

indicates whether or not to shake the screen.

shakedown :

indicates whether shake is in down cycle.

Shakefreq:

how fast it shakes. (The frequency)

shakeval:

how far it shakes. (The amplitude)

Index value iterators.

These variables cycle through available indices of enemy objects:
next_bomb_index
next_assault_index
next_lheavy_index

next_rheavy_index

next_kamikaze_index

Game background images:
background_bmp:

 holds the background

shake_bmp:

image for shaking the background
Blitter objects:
bombs[BOMB_NUM]:
 the bombs

assaults[ASSAULT_NUM]:
the assaults

lheavies[HEAVY_NUM]:
 the left-facing heavy bombers

rheavies[HEAVY_NUM]:
 the right-faceing heavy bombers

muzzle_flash, muzzle flash
earth
big_assault

kamikazes[KAMIKAZE_NUM]: kamikaze planes

mars,

station: The Legion's base

Variables Describing game state:
game_state:

Where you’re at in the game. (menu, story, victory, playing, death, etc)
current_level

The level you’re on, or the one you’ll be on when you start

menuframe:

A counter for menu screens.
Levelmessage

The string that holds information about the level your on. It is displayed onscreen at the beginning of each level.
dyingflag

indicates whether player is dying.
Dyingframe

indicates whether player is ready to move to game over screen.
bomb animations

 anim_bomb_fly

 anim_bomb_die
assault animations

anim_assault_fly

anim_assault_die
heavy animations

anim_heavy_fly

anim_heavy_die

anim_heavy_hit

kamikaze animations. the number represents the angle of flight (0 is right x axis)

anim_kami_fly_0

anim_kami_fly_22

anim_kami_fly_45

anim_kami_fly_67

etc.
Life counters and health counters
Used to run death animation only once, or to check the health of the enemy

bomblife[BOMB_NUM]

assaultlife[ASSAULT_NUM]

lheavylife[HEAVY_NUM],

rheavylife[HEAVY_NUM],

kamikazelife[KAMIKAZE_NUM];

heavy_health

Hit points for heavy bomber

bigassaultlife,

big_assault_max_health
hit points for big assault

Sound handles:
titlemusic,

sound id for music

act1music,

 act1 music

 act2music,

act2 music

 act3music,

act3 music

 enginesound,

looping engine sound

 chargesound,

charge sound

 enginevol,
volume of engine noise

 cannon_ids[8],
sound ids for cannon

 explosion_ids[8]
explosion ids

 bomb_explosion_ids[8],
bomb explosion ids

 warpsound,

entering hyperspace

 reversewarpsound,
exiting hyperspace

 boarding_ids[8]
assault boarding sound.

 big_explosion;
big stuff blowing up

Fire rate variables
 Bounceval

frame interval at which to fire (smaller=faster)
Bouncefire

fires when it = bounceval
firing_last_frame
indicates whether player was firing in the previous frame
Polygons:
Cannon
 the cannon polygon.
Turret

 the turret base
missiles[NUM_PROJECTILES];

array of missiles
stars[NUM_PROJECTILES];

array of stars
particles[MAX_PARTICLES]

the particles for the particle engine
Character bibles:
Turret: This is the player. He/She is represented by a rotating turret at the bottom of the screen. The goal of the turret will be to prevent objects from reaching the surface of the ship.

Animations: Move Left, Move Right, fire particle.

Sounds: Cannonfire, EXP1
Boarding Assault Vehicle:

[image: image1.emf]

These ships will attempt to swarm the Reckoning and board the ship by landing on it. Their success will reduce the ship’s shield or hull levels.

Animations: Flying, Boarding, Dying

Sounds: Boarding_alarm
Heavy Bomber:

[image: image2.png]

 These ships fly bombing runs across the surface of the Reckoning they drop large “shield buster” pipe bombs. The player can prevent these bombs from being dropped by quickly destroying these enemies.
Animations: Flying, Dying
Sounds: Heavy_Bomber_die
Shield Buster Pipe Bombs:

[image: image3.emf]

 These are the bombs dropped by the heavy bombers, they do significant damage and should be destroyed before they reach the surface.

Animations: Flying, Dying

Sounds: bomb_explosion
Unmanned Kamikaze Fighters:

[image: image4.emf]

These are small, hard to hit space fighters that come in large swarming formations. They are remotely controlled from nearby enemy stations or capitol ships. Their goal is to crash into the surface of the Reckoning and cause damage. Although this damage is minimal, it is made up by the sheer number of these swarming fighters.

Animations: Flying, Turning left, Turning Right, Dying

Sounds: bomb_explosion
Large Assault Corvette:

[image: image5.emf]

 This is a very large boarding assault vehicle, it is slow moving but when in range, the Reckoning will not stand a chance against it. It is considered a major threat and should be made a primary target. The Assault Corvette also releases heavy bombs to soften its target boarding zone prior to landing.

Animations: Flying, Shooting, Dying

Sounds: boarding_alarm

Phobos Main Station:

[image: image6.png]

This is the headquarters of the Feudal Legion and home of its leader, Vesuvius. It is the primary objective for this mission. It is heavily armed and defended and can put up a fair fight against a heavy cruiser such as the Reckoning.

Animations: Rotate, Explode

Sounds: base_explode
Vesuvius:

Although Vesuvius is never seen, (he is presumed to be residing in the station) he is the villain of the Ordnance universe.
Story Overview

Storyboard:

Title Screen:
[image: image7.png]

Music: Opener.wav

Transition in: fade from black

Transition out: fade to black

Story:

[image: image8.png]2420 AD;_

“After the great commune that urited Earth’s natlons intoa
sirigle democratic state, those seeking power and control
- abandoned the planet and locked: elsewhere ‘The Phobos

“This Legion, growing !r
“.criminals, and thos g%ng‘
leader, Vesuvius, now col

y -Seelng himself as a’fvlng re'

Transition in: fade from black

Transition out: fade to black

Story (continued):

[image: image9.png]Realizing that their weaponsaregnoymatch for the planetary
bombardment, the Earth’%ﬁ il has dispatched
one of its last furictioning:

to sally forth and-attempt to

engaging the: Phobos m;
orbiting Mars.

Riné forces by
'S he‘dquarters

in place in Earth's orbit. If the mission is succ
will set forth to Mars ‘at maximum speed, Where i
Phobos Main Sta‘ﬂqg

s

th‘e,éruiser
destroy the

Transition in: fade from black

Transition out: fade to black

Story (continued)
[image: image10.png]X
You are a turret gunner stationed on the U.S.S. Reckoning.
Your mission is to protect the cruiser from attacking Feudal
Legion forces, to inhibit boarding efforts of the Legion,
and to assist the captain in any way in engaging the station.

This mission is a last resort. Fail IItin the loss of
Earth to Legion control, and all kn e will belong to

Vesuviu*ﬂ luck!

Transition in: fade from black

Transition out: fade to black

Chapter 1: Blockade run

Chapter 2: Ordnance

Chapter 3: The Day of Reckoning

Transition out: fade to white (either death or victory)

Epilogue:

[image: image11.png]mﬂmrr: :;sul.:gion

[
proved crucial to
efforts the cruiser

Transition in: Fade from black:

Transition out: none

Game over:

[image: image12.png]have not only failed your mission,
the free world.

Transition in: Fade from black:

Transition out: none

Story
2420 AD:

After the great commune that united Earth’s nations into a single democratic state, those seeking power and control abandoned the planet and looked elsewhere. The Phobos and moon colonies established by the former NATO and G8 alliances were quickly conquered by the Feudal Legion.

This Legion, growing stronger with support from outcasts, criminals, and those tempted by the power offered by its leader, Vesuvius, now controls all extra-terrestrial territories. Seeing himself as a living reincarnation of the ancient volcano, the deranged Vesuvius now sets his sights on Earth. With his fleet assembled, he is laying siege to the planet.
Realizing that their weapons are no match for the planetary bombardment, the Earth Defense Council has dispatched one of its last functioning heavy cruisers, the U.S.S. Reckoning to sally forth and attempt to draw away the attacking forces by engaging the Phobos main station. Vesuvius’s headquarters orbiting Mars.
The first objective of the Reckoning will be to run the blockade in place in Earth’s orbit. If the mission is successful, the cruiser will set forth to Mars at maximum speed, where it will proceed to engage and possibly destroy the Phobos Main Station.

You are a turret gunner stationed on the U.S.S. Reckoning. Your mission is to protect the cruiser from attacking Feudal Legion forces, to inhibit any boarding efforts of the Legion, and to assist the captain in any way in engaging the station. This mission is a last resort. Failure will result in the loss of Earth to Legion control, and all known space will belong to Vesuvius. Good luck!

Game Progression:

Scene Details for Chapter 1:
Legend:

· B: Boarding Assault Vehicle

· H: Heavy Bomber
· P: Pipe Bomb

· F: Unmanned Kamikaze Fighter

· L: Large Assault Corvette

· X: Phobos Main station
· Arrows: Direction of object movement

· 1-9: Sequence Order

· S: Simultaneous entrance

· Scene (chapter number).(scene number)
The bottom of each scene describes how the enemies are presented on screen.
[image: image13.png]58

Scene 1.1

58 58

58

[

Sequence, 1,2,3,2,1,3

Then 16 from ach
simutaneausly

[image: image14.png]Scene 12

e
e
e
.
e
e
‘-

I

Sequence: 1-7x1, 711, S187x1,3286x1
eten)
03 5385x2 528601 1871

[image: image15.png]

[image: image16.png]Scene 14

[Sectience: Random fram 1,23 x 16H

[image: image17.png]b

[image: image18.png]Jj }L‘l: \If Soane 15

Sectuence: 1-4 ot random x20 P

[image: image19.png]Scene 17

2 s W—

i

Secuence: (al simutaneous) 185, 1XBB+2cdH, 134B+2x4H 4x48,1X2B422H 2B SXOH, 3388

[image: image20.png]Scene 18

Big ship

‘Sectuence s(ixIL + 263 10P

Game Flow Structure

[image: image21.png]Game Over

L

Losing sex

/]

Retry

““" vanance Min
oranance
| e
aut
Vicory Screen and
Start Game sory
Game
Over w0 /]
Vission Brefing Chepter 3 The day Losing
andinstructions of Reckoning sequence
Spacebar o |
Chapter 1 Chpter 2 Losing
Blckade Fun Ordnance Seaence

In “Check frame #” the script is called. It is here that the direction of flow in the game is determined. The program exits or changes state based on actions here.

Program State Chart

[image: image22.png]Infilizatiors Load Game Stete

brps, souncs, otc.

Check Frame # |——— [Set Postions and
Velastes for
objects
e itz S L
[N

1 I

e St Render Animate
E— Orjects.

Background

Game resutt Dead or Qut
winlLose

Calision
UpdeteHUD 1| Detoctions logic

Lessons Learned:

There was a huge amount of effort put into this program. After all of the hard work, there was a lot that I learned about game programming and software engineering:

· Get the technology out of the way up front. Take care of everything technical in the game, so all you have to worry about is making the appropriate function calls or scripting messages to make the game come together. Understanding the technology before designing levels and scenes makes the process much smoother.

· Don’t trust other people’s code. While LaMothe’s blitter object engine was helpful, it was full of flaws and non-functional components. There were also items that worked improperly. For example, the timer that LaMothe uses is terrible for games and completely imprecise across different machines. The game would run at different speeds on different machines. The timer code, as with much of the blitter object code, was rewritten to suit my needs.

· Don’t try to optimize too much before it’s done. This can obfuscate the code. Ultimately I ended up leaving much of the code unoptimized, as the program is not demanding on today’s fast machines.

· Partners are your friends. Working alone gave me a lot of great experience and understanding about how this works. However, it might be useful having a lackey to do the busy work while I focus on the more important stuff next time. (
Bibliography:

LaMothe, Andre, Tricks of the Windows Game Programming Gurus 2nd ed. Indianapolis, IN: Sams Publications, 2002.

LaMothe Blitter Object (BOB) engine.
