CIS 587 – Computer Game Design and Implementation
Harvey Roy Divinagracia

ASSIGNMENT 4
9/28/2002

TABLE OF CONTENTS

[image: image1.png]Try Again

You ran out of luck before
you can finish the game.

Your score:

10840

Cwew

[image: image2.png]iew Contiol_Help

PACMAN 2001

e

O
CONTROLS
ABOUT

[image: image3.png]Congratulations !!!

Pacman has saved the day once more by
defeating the ghosts and rescuing Ms. Pacman.

e

Your score:

10840

Cwew

[image: image4.png]SCORE 4330 EEL| WALLPOWER 0
uvEs 3 2 KEY 0

[image: image5.png]ool Help

Controls

PACMAN MOVEMENT
Controling Pacman movement n the Maze s made
possible using the keyboard arrow keys:

[w»

down

right
left

PLAY OPTIONS

“The following key commands can be made during
game play:

9 T —
3 [—
No sound (mte)

Low qually graphics

Used sk with o key t0pass

through the Maze walls or (o use key
1o open gate found in ghost chamber.

Cwew

[image: image6.png]About

The 80's popular PACMAN is back wih a twist | He's up to
rescue his giffiend Ms. Pacman, who was Kidnapped by his
adversaries. He s back munching pils and power pelles but
halfway through the game, the random freat temsenables
PACMAN 1o gain power (0 pass thiough walls within the maze
(except for getting into the ghosts' chamber where he needs the
maglc key 10 get nside). Thus, he must use this new power wisely
10 avoid his enemies especially when power peliels uns out or far
‘away and be successfol n is rescue mission.

PACMAN 2001 (ver. 1.0) i a final project fo CIS 587 ciss at
U of M - Dearbom. This game s created for acaderic
putposes only wih no commercil nent n mind. The main
goal is o leam and apply the foundatons of game design
Ueing Macromeds Flaeh sofware and the Actonscrit
language.

Spocial tharks o Dr. Bruce Maxim for CIS 587 and o P
Neave and Francisco Patlore for thef respecive Fiash game
implementatons avaiablefor Actonscript ianguage earing.

Cwew

[image: image7.png]Try Again

You ran out of luck before
you can finish the game.

Your score:

10840

Cwew

I. Executive Summary

1.1. GAME TITLE

Pacman 2001 (ver. 001)

1.2. GAME GENRE

Arcade-type game simulated in a PC.

1.3. ABSTRACT OF GAME STORY

The 80’s popular PACMAN is back with a twist! He’s up to rescue his girlfriend Ms. Pacman, who was kidnapped by his adversaries. He’s back munching pills and power pellets but halfway through the game, the random treat item enables PACMAN to gain power to pass through walls within the maze --- except for getting into the ghost chambers where he needs the magic key to get inside. Thus, he must use this new power wisely to avoid his enemies especially when power pellets runs out or far away and be successful in his rescue mission.

1.4. GAME PLAY AND APPEARANCE

The user plays the game by being responsible of controlling the movement of Pacman in the Maze using the arrow keys and the space key to invoke certain power/action. The game is played by progression on several levels that is completed one at a time by the user. It is concluded when Ms. Pacman is rescued or when Pacman lives runs out (refer to User Guide – How to Play the Game section for more details).

The original Pacman game display shall be enhanced and shall have the following features:

· The root of the program has a menu present with several choices on knowing about the game as well as for playing it.

· Pacman and the ghosts retain their original colors although the overall color theme/fonts of the game layout is made bright, fun and easy to understand.

· The score, life, powers, and the level indicator will be together at the bottom of the screen for a quick and easy glance on the game status.

· From time to time, Ms. Pacman will be shown in the ghost chamber crying for help.

· A star is shown randomly to represent as a treat for the “pass-through-walls power” for Pacman to retrieve. Real-time update is made on the status when this power is used.

· A magic key is present in the game that Pacman has to retrieve during the last level considering that all pills/power pellets are consumed.

· The game display remains in 2D representation to follow the tradition of arcade games with the all-familiar Pacman sound effects although a post-game assessment is added to make the game more challenging to the player.

All the improvement is intended to make the game more appealling especially for the younger generation, which were not available when the original game was released.

II. Product Specification

2.1. PRODUCTION TEAM DESCRIPTION

Harvey Divinagracia - graphics designer, game writer/ designer, coder, tester, and producer.

2.2. TARGET AUDIENCE

Anyone who knows how to use the computer --- likely kids 6 years old/up and grownups. Most of all, old gamers and aficionados that played the original Pacman game 20 years ago.

2.3. GAME PLAY TIME

If the player have expert capability, the game play time per level is projected to be finished at least 2 minutes considering no player life is lost, i.e., the game is being played flawlessly.

The overall game play time can vary depending how the player lives are spent as well as how the player responds to the different levels of the game where each level has a different feature in terms of scoring and power-capability of the player. The more the player tries to evade his enemies without finishing all the pellets, the longer for him to finish the level before proceeding to the next.

2.4. PRODUCTION TOOLS

Software

· Flash MX – for game coding, simple vector graphic design, testing and publishing (.EXE + .HTML + .SWF file format).

· Adobe Photoshop 7 – for vector and graphics design; image optimization.

· Fireworks 4 – for vector and graphics design.

· Dreamweaver 4 – for editing the HTML page with embedded Flash object.

· Word 2000 – for design documentation.

· MS IE 5 or Netscape 4.1 with Flash 5 plug-in – to serve as client when playing the game over the internet. This is not needed when an executable version of the game is available in the local machine.

Hardware

· PII 450 MHz PC (256 Mb RAM) with Windows 98 SE O.S.

· 19” Monitor

· Keyboard / Mouse

· Graphics Tablet

· Pocket CDR – to contain the final game release.

III. User Guide

3.1. HOW TO INSTALL THE GAME

Installing the game is simple and straightforward. There are two ways it can be installed depending upon the intent of its availability. If user has plans for letting the public play it then it can be installed in a web server where the game can be invoked through the HTML page that embeds the game object. Otherwise, it can be installed in a single CPU using a single executable file.

Local Machine Installation

This is when the user wants the game to be available in a single machine where the needed files are stored locally.

Files:

· PAC2001.EXE
872 Kb

· ARIAL.TTF
267 Kb

Minimum Hardware / Software Requirements:

· PII 133 MHz CPU with 64 Mb RAM with Windows 95 B or greater

· Video Card: supports at least 256 colors

Procedure:

a) Check if the Arial font is installed in Windows. If not, then install the Arial.ttf file using the font manager/program in the Windows Control Panel (refer to Windows O.S. Manual for details on font installation).

NOTE:

A typical Windows installation carries the Arial font as part of the set of fonts installed by default. Step 1 is only applicable if the Arial font has been removed prior to game installation.

b) Copy Pac2001.exe to desired location in local hard drive.

c) Create shortcut to the Pac2001.exe file and place it on the Desktop area for easy access. For advance users, this shortcut item can be added to the Windows Start Menu (refer to the Windows O.S. Manual for details on creating shortcuts and adding items in the Start Menu).

d) The game can then be started using the created shortcut. If the shortcut is not created/available, user has to go the location of the game file in the local drive and run the program from that location.

Internet

This is when the user wants the game to be available in the internet where the needed files have to installed in a web server.

Files:

· PAC2001.HTML

2 Kb

· PAC2001.SWF

72 Kb

Minimum Hardware / Software Requirements:

· Client Machines need to have the hardware and operating system that at least supports MS IE 5 / Netscape Navigator 4.1 with a Flash 5 Plug-in.

NOTE:

Client Machines are recommended to have the latest processor ratings (e.g., at least 350 MHz for Intel Machines) and generous RAM (at least 128 Mb) in order to achieve a decent game play.

By the way, client machines include MACS as long as the installed browser supports a Flash 5 plug-in.

· Web server – for storing game files and HTTP connection from client/browser.

Procedure:

a) In the server side, create target location for the game files. This location should be accessible to the client/browser when requesting the needed files.

b) Copy Pac2001.html and Pac2001.swf files to the target location.

c) From a certain active web page in the server, create a link to the Pac2001.html file.

NOTE:

The Pac2001.html file does not necessarily need to be installed in the server considering if an existing web page will be utilized to contain the game object code. If this happens then make sure that the code within the <OBJECT> tags in Pac2001.html file are copied to the existing web page. Furthermore, the location of the Pac2001.swf file should be updated to reflect the location where it could be accessed.

d) To play the game, user on the client side has to click the link to the Pac2001.html file.

Recommendation:

If the game performance, when playing it through the internet, is poor then it is recommended that the Pac2001.exe file be made available for the user to download. The user can then install it locally following the procedure described in Local Machine Installation discussed above.

3.2. HOW TO PLAY THE GAME

Object of the Game

Rescue Ms. Pacman, who is imprisoned in the ghosts’ chamber.

Game Facts and Rules

a) The game is consisted of several levels and starts always at level 1.

b) Pacman has to eat the pills and power pellets available in every level.

c) Pacman can complete a level if all pills and power pellets are consumed.

d) Pacman has only three lives available per game.

e) Pacman should evade the ghost as much as possible without losing his life. If any of the ghosts catches Pacman, he loses his life.

f) Pacman can only defend himself temporarily (around 8 secs) from the ghosts if he ate a power pellet.

g) Pacman can gain ‘pass- through-walls’ power when eating a ‘star’ treat.

h) The ‘pass- through-walls’ power has to be invoked by the player in order for Pacman to pass through a wall.

i) Pacman has to go through all the levels of the game and rescue Ms. Pacman in order to be declared as winner.

j) Ms. Pacman can only be rescued if Pacman has the magic key that opens the ghosts’ chamber.

k) The ghosts’ chamber can only be opened if the player invokes the key action considering that Pacman already retrieved the magic key and is located at the gate of the ghosts’ chamber.

l) The rescue of Ms. Pacman is a condition in the game that is defined as Pacman being able to enter the ghosts’ chamber.

m) The game is scored according to the following:

· Pills / power pellets eaten

· Number of treats eaten

· Number of ghost defeated

n) The game ends if:

· the user stops it by quitting.

· Pacman lost all his three lives.

· Ms. Pacman is rescued.

Game Controls

Pacman movement in maze:

· Arrow keys – Move Up, Down, Left and Right on the Maze

Play options while game is running:

· Q - Quit game play

· P – Pause game (toggle to continue play)

· M – Mute (no sound)

· L – Low quality graphics; useful when running the game on slow machines

· <Space Bar> - Used along with arrow key to pass through Maze walls or to use key to open gate in ghosts’ chamber.

Game Strategies and Tips

· For beginners, focus on eating as much pills as possible.

· Eat the power pellets only when it is not possible to evade the ghosts especially when cornered.

· Use the ‘pass-through-walls’ power as last resort to avoid the ghosts. Save this for the later levels as much as possible.

· Grab as many treats as possible to increase the game score.

· Play the game in the minimal screen as possible. Maximizing the game window slows down the game pace (this is not noticeable when running the game on 800 MHz machines).

· Practice, practice, practice …

IV. Game Specification

4.1. WHAT IS IT LIKE TO GAME THE GAME?

With an improved display, the game is intended to create excitement and is hoped to capture the heart of former Pacman players. It shall start by displaying the title and several buttons. The player then clicks the PLAY button to begin the game.

The game shall be consisted of 5 levels. The player has to eat all the pills/power pellets found in the Maze before he can proceed to the next level (details and rules available in User Guide – How to play the Game). A treat within levels 3 and 4, which is a star, shall appear randomly near the ghost’s chamber for the player to retrieve as a power to use in the game. The player can invoke this power where he can let Pacman pass through the walls in the Maze except to the ghost chamber where it will not work. As for game levels 1 and 2, the treat will just be an ordinary fruit treat worth some hundred points.

By the time the player reaches level 5, which is the final level, no more treats will be available for Pacman to retrieve for extra power or points. What needs to be done is to eat all the pills/powerpellets before the magic key is shown in the Maze. Pacman needs to retrieve the magic key and use it to open the ghost chambers to rescue Ms. Pacman.

While the game is being played, the crying Ms. Pacman is shown near the ghost’s quarters from time to time. This serves as a reminder to the player that this is the objective of the game, that is, to rescue Ms. Pacman. The player is declared the winner only when the objective is accomplished. Thus, he has to be careful because Pacman has only three lives available to play the game since it is consisted of five levels only.

4.2. INTERFACE MOCKUP

The basic layout for the game when played is shown below:

4.3. SUMMARY OF STORY LINE

Ms. Pacman has been kidnapped by Pacman’s enemies (the ghosts) and is held in a building 5 stories high (the game levels). She is kept at the highest floor so Pacman has to do his best to climb the building, avoid/defeat his enemies, and rescue his girlfriend. On every floor (levels) of the building, Pacman has some “resources” available that he can utilize to survive but he has to use it wisely before his luck (life) runs out.

4.4. STORYBOARD

F

4.5. CHARACTER BIBLES

No extensive character bible is needed for the game. The main characters can be summarized as follows:

· Pacman - represented by the player.

· Ghost – Pacman’s enemies; controlled by computer.

· Ms. Pacman – Pacman’s girlfriend whom he must rescue.

4.6. LEVEL OR SCENE OUTLINES

· Level 1

· Pacman starts with 3 lives, 0 “pass-through-walls” power, 0 key and 0 score.

· 244 pills to eat.

· Presence of power pellets to defeat enemy within the level.

· Randomly displayed treat is a fruit, which is a pear, and it helps to increase game score once retrieved by Pacman.

· Ms. Pacman is not shown in ghosts’ chamber.

· Level 2

· 244 pills to eat.

· Presence of power pellets to defeat enemy within the level.

· Randomly displayed treat for Pacman to retrieve is a fruit, which is a banana, and it helps to increase game score once retrieved by Pacman.

· Ms. Pacman is crying for help in ghosts’ chamber (displayed when all ghost are outside the chamber).

· Post-game assessment is available if the player fails to proceed to the next level.

· Level 3

· 244 pills to eat.

· Presence of power pellets to defeat enemy within the level.

· Randomly displayed treat for Pacman to retrieve is a star, which is used as “pass-through-walls” power and it helps to increase game score when obtained by Pacman.

· Ms. Pacman is crying for help in ghosts’ chamber (displayed when all ghost are outside the chamber).

· Post-game assessment is available if the player fails to proceed to the next level.

· Level 4

· 244 pills to eat.

· Presence of power pellets to defeat enemy within the level.

· Randomly displayed treat for Pacman to retrieve is a star, which is used as “pass-through-walls” power and it helps to increase game score when obtained by Pacman.

· Ms. Pacman is crying for help in ghosts’ chamber (displayed when all ghost are outside the chamber).

· Post-game assessment is available if the player fails to proceed to the next level.

· Level 5

· Final level of the game.

· 244 pills to eat.

· Presence of power pellets to defeat enemy within the level.

· No more treats available for Pacman to retrieve.

· Ms. Pacman is crying for help in ghosts’ chamber (displayed when all ghost are outside the chamber). She is permanently shown in the chamber after Pacman ate all the pills / power pellets.

· Magic key is shown on maze once Pacman consumes all pills and power pellets. This object has to be retrieved by the player in order to open the gate of the ghosts’ chamber.

· Post-game assessment is available if the player fails to rescue Ms. Pacman. Otherwise, a ‘CONGRATULATIONS’ message is displayed.

V. Design Specification

5.1. IMPLEMENTATION DETAILS

High Level Program Flow

Screen Displays

The main screen when game is launched:

This is shown when the player selects the Controls button:

Information about the game is shown on the screen when the player selects the About button:

This is the actual game when played (considering Play button in the menu was selected earlier):

This is an example of a post-game assessment message (varies depending upon the level(s) finished by the player):

If Ms. Pacman was rescued, this is shown on the screen congratulating the player:

Source Code
Refer to Appendix A.
5.2. DATA STRUCTURE AND INTERFACE DEFINITIONS

Pacman 2001 is created using Flash. DirectX will not be utilized when doing the game design because the requirements for creating Flash-based games is the knowledge of the Actionscript language (native to Flash which has a Javascript-like syntax and commands) and the concept of movieclips / keyframes. Therefore, this sections discusses the relevant information --- the data structure section focuses more on certain global data used in the game while the interface is more on how the user interacts with game (not the interface defined for COM objects in DirectX).

Game Interface

The essential game interface needed to play Pacman 2001 are the following:

· Keyboard - for playing the game as well as for invoking power and game options.

· Screen display - for visual feedback of the action and game status.

· Mouse – for selecting buttons on the Main Screen / Menu.

NOTE:

Sound is available while playing and is intended to enhance the whole game experience.

Game Controls

Pacman movement in maze:

· Arrow keys – Move Up, Down, Left and Right on the Maze

Play options while game is running:

· Q - Quit game play

· P – Pause game (toggle to continue play)

· M – Mute (no sound)

· L – Low quality graphics; useful when running the game on slow machines

· <Space Bar> - Used along with arrow key to pass through Maze walls or to use key to open gate in ghosts’ chamber.
Data Structure

Being a simple game, there are no complex data structure used since it relies on global data and the usage of arrays, where it gets the job done. Refer to the source code found in the Appendix for the global data used in the program.

5.3. PSEUDOCODE FOR ALGORITHMS

New Level

PROCEDURE PrepareNewLevel;

IF newlevelFlag == true

SET

newlevelFlag = false;

backgroundSoundIndex = 1;

pillEatCount = 0;

pillsConsumed = false;

IF (levelcount + 1) > gameMaxLevel

SET Pacman.visible = false;

IF msPacmanRescued == true THEN congratulatePlayer;

ELSE showPost-gameAssessment;

ELSE

increment levelCount;

IF levelcount == gameMaxLevel

SET lastLevelFlag = true;

ENDIF;

IF treatIndex < MaxFruitIndex && lastLevelFlag == false

DO

increment treatIndex;

END DO;

ELSE

DO

remove treat FROM level;

END DO;

ENDELSE;

IF newGameFlag == false

DO

hide ghosts and pacman;

END DO;

ELSE

DO

CALL NewGame;

END DO;

ENDELSE;

ENDIF

END PrepareNewLevel;

Use Spare Life

PROCEDURE UseSpareLife

IF UseSpareLifeFlag == true

SET

UseSpareLifeFlag = false;

IF spareLives == 0

Pacman._visible = false;

SET

GameOverFlag == true;

DO

showPost-GameAssessment;

END DO;

ELSE

DO

decrement spareLives;

END DO;

ENDELSE;

ENDIF;

END UseSpareLife;

New Game

PROCEDURE NewGame

IF newGameFlag == true

DO

play new game sound;

END DO;

ENDIF

END NewGame;

Game Loop

PROCEDURE GameLoop;

IF levelcount == gameMaxLevel AND pillsConsumed== true AND PacmanHasKey == false AND msPacmanRescuedFlag == false

DO

Show chamberKey;

END DO;

ENDIF;

DO

animatePacman();

END DO;

IF pillsConsumed == false AND lastLevel == false

DO

Show treat;

END DO;

ELSEIF pillsConsumed == true

IF Pacman.location == MagicKey.location AND PacmanHasKey == false

SET

PacmanHasKey == true;

END SET;

DO

Remove chamberKey;

END DO;

ENDIF;

IF Pacman.location == Chambergate.location AND PacmanHasKey == true AND UseKey== true

DO

Open Chambergate;

END DO;

ELSE

Show Chambergate locked;

IF Pacman.location == InsideChamber && PacmanHasKey == true

SET

msPacmanRescuedFlag = true;

newLevelFlag = true;

EXIT LOOP;

END IF;

ENDELSE;

IF Ghosts.color == blue

DO

Decrement BlueGhostTimer;

END DO;

ENDIF;

DO

Animate Ghosts;

Show MsPacman;

END DO;

SET

lastScore = score;

IF playingFlag == false

DO

 Pause Game;

END DO;

END IF

IF quitGameFlag == true

DO

Stop Game;

GOTO Main Menu;

END DO;

END IF

END GameLoop;
Show Ms. Pacman

PROCEDURE ShowMsPacman;

IF Ghosts.returningToChamber == false AND level <= _root.gameMaxLevel AND pillConsumed == false

IF Ghosts.insideChamber

DO

 Do not show MsPacman;

END DO;

ELSE

DO

 Show MsPacman;

END DO;

ENDELSE;

ELSE

DO

 Do not show MsPacman;

END DO;

ENDELSE;

IF pillsConsumed == true AND lastLevel == true AND PacmanhasKey == true

DO

 Show MsPacman;

END DO;

ENDIF;

END ShowMsPacman;

NOTE:

Due to interaction of various game objects in a timeline-based game and the nature of the implementation language/development platform, some pseudocodes were implemented not as a single procedure in order to achieve desired program behavior.

5.4. DEVELOPMENT ENVIRONMENT

Hardware

PC with a PII 450 Mhz processor, 256Mb RAM, keyboard/mouse/graphics tablet, and a 19” monitor was used. Installed operating system was Windows 98 SE.

Software

Flash MX was heavily utilized to create the Pacman 2001 game. It has an integrated environment that supports the following:

a) graphics design – for vector graphics creation and bitmap manipulation.

b) coding – an editor with ‘code autocomplete’ feature for the Actionscript language.

c) testing – a movie test container and a code debugger is available for testing the game.

d) game publishing – for creating different file formats and game file size optimization.

e) frame sequencing – appropriate keyframes that respond to game conditions can be created through the timeline.

Some complex graphic objects were designed outside the Flash environment utilizing the capabilities of Adobe Photoshop and Fireworks, where the end result was imported back to Flash.

Other software that also needed for creating the game were the following:

a) Dreamweaver 4 – for editing the HTML page with embedded Flash object.

b) Word 2000 – for design documentation.

Test/Build Strategy

The game was built incrementally where objects and corresponding code are introduced to the build one at a time for easy debugging. Furthermore, portions of the game code were reused from an existing code/game in order not to ‘reinvent the wheel’ (see Appendix B for more details). A back-up copy of the game was made every time a new functionality was implemented successfully.

APPENDICES

A. Acknowledgements

PACMAN 2001 (ver. 1.0) is a final project for CIS 587 class at U of M - Dearborn. This game is created for academic purposes only with no commercial intent in mind. The main goal is to learn and apply the foundations of game design using Macromedia Flash software and the Actionscript language.

Special thanks to Dr. Bruce Maxim for CIS 587 and to P. Neave and Francisco Pastore for their respective Flash game implementations available in the internet for Actionscript language learning.

B. Source Code

Reuse* of existing Actionscript code was made to create portions the Pacman 2001 game, where it was derived from a Flash-based game created by P. Neave. The reused code was used to implement the following functionality of the game:

a) Ghost movement – rendering of the ghost movie clips with respect to the maze dimensions.

Pacman movement – only the basic behavior of the Pacman movie clip. The entire advanced behavior of Pacman has to be created from scratch.

NOTE:

* - Reuse was made not to ‘reinvent the wheel’ as well as to obtain the optimum performance for the game. Furthermore, it enables the design to focus more on the logic on how to weave the story line that is totally different from the original Pacman game.

Another fact on this ‘reuse strategy’ is that it carries along with it the global variables needed by the code snippets.

FRONT Scene, Frame 1 source code

// This is the preloader for the game. The game will not be available until it is loaded in client machine.

// Note: This is used when game is made available through the internet.

tot = getBytesTotal();

loaded = getBytesLoaded();

if (loaded == tot) gotoAndStop("Menu");

FRONT Scene, Frame 2 source code

// Loop back to frame 1 until the whole game is 'loaded'.

gotoAndPlay(1);

FRONT Scene, Frame 3 source code

score = 0;
// Always set the score to zero (Useful if the player decides to play the game again.)

stop();

// Do not proceed to the next frame.
GAME Scene, Frame 1 source code

// ***

// P A C M A N 2 0 0 1

// ---

// - This game is for CIS 587 Computer Game Design and Implementation class

// Term Project.

// - There is NO COMMERCIAL INTENT for this program. It is created only to

// learn game design concepts and methodologies as well as to gain

// familiarity with the FLASH Actionscript language.

// - Portions of the code for Ghost movements were adapted from a game

// implemented by P. Neave.

// ***

// ===

//

GLOBAL DATA REFERENCE

// ===

// General data

// ------------

lives = 3;

// Initial number of Pacman lives

level = 0;

// Level value is initially set at zero but is incremented as game starts / progresses.

fruitNum = 1;

// Initial index for movieclip serving as Pacman treat

gameMaxLevel = 5;

// Specified number of levels to complete game

hasKey = 0;

 // Key for ghost chamger

OFFX = 18;

// X-axis offset of pellet from map to screen

OFFY = 18;

// Y-axis offset of pellet from map to screen

pauseCount = 0;

// Pause game toggle

pillEat = 0;

// Quantity tracking for pellets eaten

score = 0;

// Game score tracking

// Game status

// -----------

lastLevel = false;

// Last level to play flag

playing = false;

// Play status flag

pillsConsumed = false;

// All pills consumed by Pacman (total of 244)

quit = false;

// 'Quit game'event flag

stopped = true;

// Pacman animation status flag

Snd.ChSnd = true;

// Chomp sound toggle (for Eat Pill 1 or 2)

msPacmanRescued = false;
// Ms. Pacman rescue flag

notMute = true;

// Sound control flag

newLev = true;

// 'New level' event flag

newLife = false;

// 'New life needed' event flag

newGame = true;

// 'New game start' event flag

insideChamber = false;

// 'Pacman attempting to go inside ghost chamber' flag.

// Wall passing-related data

// -------------------------

beyondX = 0;

// X-axis target location in Maze for wall-passing.

beyondY = 0;

// Y-axis target location in Maze for wall-passing.

wallbonuslevel = 2;

// Game level where wall passing powers are available.

wallcyclecount = 0;

// Tracks number of cycles of reanimating Pacman during wall passing.

wallcoord = 0;

// Value to add/subtract to Pacman movie clip _X/_Y Coordinate during wall passing.

wallnumcycles = 0;

// Number of cycles to complete wall passing.

wallpasscount = 0;

// Quantity of wall passing power of Pacman.

wallpasskeypressed = 0;
 // Used to signify that the 'wall-passing' button is pressed by user.

wallpassprocess = false;
// Tracks if wall-passing is started or not (used to prevent unnecessary turns while passing through a wall).

wallsuccess = false;
 // Normally false if wall passing not done. This is used to prevent successive wall passing.

// Game assessment comments

// ------------------------

result1 = "Better luck next time. You need more practice.";

result2 = "Getting better... you're halfway through the game levels.";

result3 = "You ran out of luck before you can finish the game.";

// Miscellaneous

// -------------

pacDir = 3;
// Pacman move directions : 0=N 1=E 2=S 3=W(default)

pacPos = 0;
// Pacman position relative to the dots/pills (0-2)

pacX = 14;

// Initial X-axis maze position of Pacman

pacY = 23;

// Initial X-axis maze position of Pacman

advice = result1;

// Set default value for advice after playing game.

Pacman.Hit._visible = false;
// Ensure no show of a collided Pacman frame as default.

chamberKey._visible = false;
// Ghost chamber key is not shown by default until the last level.

blankGate._visible = false;

// 'No gate' at ghost chamber.

ghPause = 40; // Time interval for ghost #3 and #4 by 2 secs. (must be multiple of 4)

ghBVal = 162; // Time range when ghost(s) turn blue (around 8 secs).

ghMove = new Array(4);

// Ghost potential movements

ghChoice = new Array(4);
// Ghost available move choices

ghBest = new Array(4);

// Ghost best move

// Prepare ghost movieclips

for (g=1; g<5; g++) {

Ghost.attachMovie("Ghost", g, g);

Ghost.attachMovie("GhKill", "K"+g, g+4);

Ghost["K"+g].Scr.kval = "";

}

// Set "number of spare lives available" indicator to non-chomp mode

for (i=1; i<3; i++) {

_root["Life"+i].gotoAndStop(1);

}

// Prepare Maze to serve as reference for coordinate tracking for individual game objects.

mapMaze();

// ===

//

GAME FUNCTIONS

// ===

// PURPOSE: For initializing overall game flags/objects prior to start of game loop.

// ---

function initGame(){

stop();

stopAllSounds();

playing = false; // Don't loop just yet

stopped = true; // Don't animate Pacman just yet

Fruit.gotoAndStop(1);

}

// PURPOSE: For initializing variables on new level or new life

// ---

function initVars() {

pacDir = 3;
// Pacman direction: 0=N 1=E 2=S 3=W(default)

pacPos = 0;
// Pacman position relative to the dots/pills (0-2)

pacX = 14;

// Initial X-axis maze position of Pacman

pacY = 23;

// Initial Y-axis maze position of Pacman

nextX = pacX - 1; // Initially moving west

nextY = pacY;
// Remain in Y-axis

nextPacDir = 3; // Set next direction

ghKill = 100;
// Initial value for killing a Ghost

ghBlue = 0;

// Initial quantity of 'blue' ghost (when Pacman eats power pellets)

numEyes = 0;
// Initial quantity of 'eyeball' Ghosts (ghosts eaten by Pacman)

Pacman.gotoAndStop(1);
// Set Pacman on frame that shows "ready-to-chomp" look

pacStep = 4; // pacStep and pacPosMax sets the speed of Pacman... { pacStep x (pacPosMax + 1) }

pacPosMax = 2; // ...and must be a multiple of 12, i.e. 4x(2+1) or 2x(5+1)

pauseCount = 0;

// Initial pause game value (0 == not paused)

beyondX = nextX;

// During play: 0 < beyondX < 27

beyondY = nextY;

// During play: 0 < beyondY < 30

wallpassprocess = false;
// Tracks if wall-passing is started or not (used to prevent unnecessary turns while passing through a wall).

wallnumcycles = 6;

// Number of cycles to complete wall passing.

wallcyclecount = 0;

// Tracks number of cycles of reanimating Pacman during wall passing.

wallcoord = 6;

// Coordinate value to add/subtract during wall passing.

wallsuccess = false;
 // Normally false if wall passing not done. This is used to prevent successive wall passing.

msPacmanRescued = false;
// Always FALSE; becomes only TRUE when Ms. Pacman is rescued at max level.

msPacman._visible = false;
// Ms. Pacman instance outside ghost chambers (shown during gameMaxLevel only)

msPac._visible = false;

// Ms. Pacman instance inside ghost chambers.

helpMe._visible = false;
// Ms. Pacman message inside ghost chambers

chamberKey._visible = false; // Ghost chamber key is not shown by default until the last level.

blankGate._visible = false;

// 'No gate' at ghost chamber.

// Default Pacman pixel coordinates (relative to Maze coords) and orientation

with (Pacman) {

_x = OFFX + 12*pacX;

_y = OFFY + 12*pacY;

_rotation = 0;

}

// Set specific Ghost physcial attributes and color

tellTarget (Ghost[1]) { // Ghost #1

ghPos = 1;

ghDir = 3;

ghX = 13;

ghY = 11;

ghNX = ghX - 1;

_y = _root.OFFY + 132;

cOrig = 0xDD0000;

}

tellTarget (Ghost[2]) { // Ghost #2

ghDir = 0;

ghX = 13;

cOrig = 0xFF9999;

}

tellTarget (Ghost[3]) { // Ghost #3

ghDir = 2;

ghX = 11;

cOrig = 0x66FFFF;

}

tellTarget (Ghost[4]) { // Ghost #4

ghDir = 2;

ghX = 15;

cOrig = 0xFF9900;

}

// Set Ghost common default variables

for (g=1; g<5; g++) {

tellTarget (Ghost[g]) {

if (this.g > 1) {

ghPos = 0;

ghY = 14;

ghNX = ghX;

_y = _root.OFFY + 174; // + 12*ghY + 6;

}

_x = _root.OFFX + 12*ghX + 6;

gotoAndStop(1);

Eyes.gotoAndStop(1);

gNum = 0;

ghNY = ghY;

ghStep = 4;

ghPosMax = 2;

ghFast = true;

Shape._visible = true;

Shape.Hit._visible = true;

c = new Color(Shape);

c.setRGB(cOrig);

}

}

}

// PURPOSE: For checking potential Pacman location if it is within Maze perimeters.

// ---

function withinMaze() {

if ((beyondX > 0) && (beyondX < 27) && (beyondY > 0) && (beyondY < 30))return true; // Inside

else return false; // Outside Maze.

}

// PURPOSE: For evaluating the wall that Pacman is about to pass trough is within the

// maze excluding the ghost chambers.

// ---

function evalWall() {

// Order of evaluation is important !!!

// If Pacman has a key, wants to move south and he's in coordinates x = 13 or 14, y = 11 in Maze m...

if ((_root.hasKey && _root.pillsConsumed) && ((pacX == 13) || (pacX == 14)) && (pacY == 11) && _root.nextPacDir == 2){

_root.pacDir = 2;

// Make sure that Pacman goes south of the Maze.

_root.Pacman._rotation = -90;
// Set appropriate Pacman orientation...

_root.wallnumcycles = 3;

_root.insideChamber = true;

return true;

}

// Otherwise, Pacman just wants to pass through a wall (except the wall of the ghost chamber)

else if (wallpasscount > 0) {

// Regular wall... check if the new pacman location beyond wall in Maze array contains '.'.

if (withinMaze() && (Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == "." || Maze[beyondX][beyondY] == "O")) {

return true;

}

// Check if wall to pass through is close to the ghost chamber (target area in Maze m is represented by a space).

// zone 1 = vertical path around chamber

if (((beyondX == 9) || (beyondX == 18)) && ((beyondY > 10) && (beyondY < 20))){

if ((Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == " ")) {

return true;

}

}

// zone 2 = horizontal path around chamber

else if (((beyondX > 9) && (beyondX < 18)) && ((beyondY == 11) || (beyondY == 17))){

if ((Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == " ")) {

return true;

}

}

// Check if wall to pass through are located on top of the Maze.

// Consider pacDir, new values for beyondX/Y as well as the number of cycles to get through the wall.

// 0=N 1=E 2=S 3=W

if (((pacX > 0) && (pacX < 27)) && ((pacY > 0) && (pacY < 6))){

// Intended direction is North or South (up and down arrow keys)

if ((nextPacDir == 0) || (nextpacDir == 2)) {

if (nextpacDir == 2) beyondY += 1;
// south

else beyondY-=1;

// north

if (withinMaze() && (Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == "." || Maze[beyondX][beyondY] == "O")) {

wallnumcycles = 8;

// Number of cycles to complete wall passing.

return true;

}

}

// Intended direction is East/West (right/left arrow key) for SHORT rectangle wall

if (((nextPacDir == 1) && (pacX == 1 || pacX == 21)) || ((nextPacDir == 3) && (pacX == 6 || pacX == 26))){

if (nextPacDir == 1) beyondX += 2;
// east

else beyondX -= 2;

// west

if (withinMaze() && (Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == "." || Maze[beyondX][beyondY] == "O")) {

wallnumcycles = 10;

// Number of cycles to complete wall passing.

return true;

}

}

// Intended direction is East/West (right/left arrow key) for LONG rectangle wall

if (((nextPacDir == 1) && (pacX == 6 || pacX == 15)) || ((nextPacDir == 3) && (pacX == 12 || pacX == 21))){

if (nextPacDir == 1) beyondX += 3;
// east

else beyondX -= 3;

// west

if (withinMaze() && (Maze[nextX][nextY] == "#") && (Maze[beyondX][beyondY] == "." || Maze[beyondX][beyondY] == "O")) {

wallnumcycles = 12;

// Number of cycles to complete wall passing.

return true;

}

}

}

}

return false;

}

// PURPOSE: For setting up the appropriate data that will be later evaluated to

// determine if Pacman's next move is OK or not.

// ---

function setPacMove(d) {

// Check only when Pacman if wall passing process is not started/on-going...

if (!_root.wallpassprocess){

with (_root) {

if (d == 0) {

// North

nextX = pacX; nextY = pacY - 1;

beyondX = pacX; beyondY = pacY - 3;
 // set coordinates that determine wall passing

Pacman._rotation = 90;

}

else if (d == 1) {

// East

nextX = pacX + 1; nextY = pacY;

beyondX = pacX + 3; beyondY = pacY;
 // set coordinates that determine wall passing

Pacman._rotation = 180;

}

else if (d == 2) {

// South

nextX = pacX; nextY = pacY + 1;

beyondX = pacX; beyondY = pacY + 3;
 // set coordinates that determine wall passing

Pacman._rotation = -90;

}

else if (d == 3) {

// West

nextX = pacX - 1; nextY = pacY;

beyondX = pacX - 3; beyondY = pacY;
 // set coordinates that determine wall passing

Pacman._rotation = 0;

}

if (!_root.wallsuccess){

//Check for wall pass power availability, Chamber key and user key pressed condition...

if (((wallpasscount > 0) ||(_root.hasKey)) && (wallpasskeypressed == 1)) {

if (evalWall()) wallpassprocess = true;
// Start wall-passing as invoked by player

}

}

else wallpassprocess = false;

}

}

wallsuccess = false; //... always false at all times unless during the instance where wall passing is finished.

}

// PURPOSE: For setting up the relevant global data that will be later evaluated to

// determine individual ghost's next move is OK or not.

// ---

function setGhMove(d, g) {

with (_root.Ghost[g]) {

if (d == 0) { ghNX = ghX; ghNY = ghY - 1; }

else if (d == 1) { ghNX = ghX + 1; ghNY = ghY; }

else if (d == 2) { ghNX = ghX; ghNY = ghY + 1; }

else if (d == 3) { ghNX = ghX - 1; ghNY = ghY; }

}

}

// PURPOSE: For not show instance of Ms. Pacman crying for help.

// ---

function noHelpMsPacman(){

_root.helpMe._visible = false;
// Remove 'help' message instance in ghost chamber.

_root.msPac._visible = false;
// Remove Ms. Pacman instance in ghost chamber.

}

// PURPOSE: For showing instance of Ms.Pacman crying for help.

// ---

function helpMsPacman() {

_root.msPac._visible = true;

_root.helpMe._visible = true; // 'help me' text animation!

}

// PURPOSE: For checking condition that is appropriate to show Ms. Pacman instance

// in Ghosts' chamber.

// ---

function showMsPacman(){

// Check only ghost #4 because if he is outside the chambers, the rest is also outside.

// Note: During game play, the ghosts exit their chambers one at a time (4th ghost exits last).

if (_root.numEyes == 0 && (_root.level <= _root.gameMaxLevel) && (_root.level > 1) && (pillEat < 244)){

with (_root.Ghost[4]){

// If inside the chamber...

if ((ghX < 18) && (ghX > 9) && (ghY < 16) && (ghY > 11))

noHelpMsPacman();

// Otherwise, all ghosts are outside... so show Ms. Pacman crying for help !

else helpMsPacman();

}

}

else noHelpMsPacman();

// Do not show Ms. Pacman crying for help.

// Persist presence of Ms. Pacman on the last level only when all pills are eaten and Pacman has the key

if (_root.pillsConsumed && _root.lastLevel && _root.hasKey) helpMsPacman();

}

// PURPOSE: For animating Pacman every cycle of the game loop / checking of object

// collision wrt Pacman.

// ---

function animatePacman() {

// When not passing through a wall...

if (!_root.wallpassprocess){

// Only move instantly if new move is along the same angle or on a pill

ang = Math.abs(pacDir - nextPacDir) / 2;

if (ang == 1) pacDir = nextPacDir;

else if (pacPos == 0) {

// Remember Pacman info so we can undo it after test

tempDir = pacDir;

pacDir = nextPacDir;

}

// Set Pacman's next move

setPacMove(pacDir);

}

// Check relative pill location

if (pacPos == 0) {

P = Maze[pacX]["P"+pacY];

// if a pill is visible, Pacman eats it.

if (P._visible) {

pacStep = 4;

pacPosMax = 2;

if (notMute) {

tellTarget (Snd) {

if (ChSnd) gotoAndPlay("Chomp1");
// Set chomping sound for eating

else gotoAndPlay("Chomp2");

ChSnd = !ChSnd;

}

}

P._visible = false;

pillEat++;

if (notMute) {

if (pillEat == 180) {

BGSnd.Back1.stop();

bgNum = 2;

BGSnd.Back2.start(0,1000);

}

else if (pillEat == 230) {

BGSnd.Back2.stop();

bgNum = 3;

BGSnd.Back3.start(0,1000);

}

}

// If all pills are eaten....

if (pillEat == 244){

_root.pillsConsumed = true;
// ...set flag.

// ...go to new level if game is below gameMaxLevel

if (_root.level < _root.gameMaxLevel){

newLev = true;

gotoAndStop("Restart");

}

//...otherwise, show key for ghost chambers for Pacman to retrieve.

else chamberKey._visible = true;

}

score += 10;

if (Maze[pacX][pacY] == "O") { // Pacman eats Power Pill

score += 40; // Equiv. to 50

if (notMute) {

BGSnd["Back"+bgNum].stop();

BGSnd.BlueGh.start(0,100);

}

ghBlue = ghBval; // Start Ghost countdown for ghBval/20fps

ghKill = 100;

for (g=1; g<5; g++) {

tellTarget (Ghost[g]) {

if (Shape._visible) { // Check ghost if eaten by Pacman

c.setRGB(0x0033FF);

gotoAndStop(2);

ghFast = false;

e = new Color(PPEyes);

e.setRGB(0xFFFFFF);

}

}

}

}

}

// Pacman isn't eating any pills, so change speed...

else {

// ... considering that Pacman is not passing through a wall

if (!_root.wallpassprocess) {

if (++pauseCount % 2) {

pacStep = 4;

pacPosMax = 2;

}

else {

// Could just go this fast, but it's too easy to escape ghosts...

pacStep = 6;

pacPosMax = 1;

}

}

}

// Check if Pacman is going through "tunnel"

if (Maze[pacX+1][pacY] == "L") {

pacX = 28;

nextX = 27;

Pacman._x = OFFX + 336; // Pills offset + 12*pacX

}

else if (Maze[pacX-1][pacY] == "R") {

pacX = -1;

nextX = 0;

Pacman._x = OFFX - 12;

}

// If Pacman's going into a wall and not invoked by user, don't make the move (undo it)

if ((Maze[nextX][nextY] == "#") && (ang != 1) && (_root.wallpassprocess == false)) {

pacDir = tempDir;

setPacMove(pacDir);

}

}

// Update relative pill location if Pacman is not moving through a wall...

if (!_root.wallpassprocess){

if (!(pacPos == 0 && Maze[nextX][nextY] == "#")) {

// Move Pacman

with (Pacman) {

if (nextX < pacX) { _x -= pacStep; pacPos--; }

else if (nextX > pacX) { _x += pacStep; pacPos++; }

else if (nextY < pacY) { _y -= pacStep; pacPos--; }

else if (nextY > pacY) { _y += pacStep; pacPos++; }

}

// Update pacPos, pacX and pacY

if (pacPos < 0 || pacPos > pacPosMax) {

if (pacPos > pacPosMax) pacPos = 0;

else if (pacPos < 0) pacPos = pacPosMax;

pacX = nextX;

pacY = nextY;

}

// Reanimate Pacman if stopped

if (stopped) {

stopped = false;

Pacman.play();

}

}

else {

// Pacman's hit a wall, stop Pacman chomping animation

if (!stopped) {

stopped = true;

Pacman.gotoAndStop(1);

}

}

}

// Otherwise, enable Pacman to pass through a wall...

else if (_root.wallpassprocess){

with (Pacman) {

// Pacman direction (pacDir): 0=N 1=E 2=S 3=W

if (pacdir == 0) {

_y -= wallcoord;

}

else if (pacdir == 1) {

_x += wallcoord;

}

else if (pacdir == 2) {

_y += wallcoord;

}

else if (pacdir == 3) {

_x -= wallcoord;

}

}

// Increment animation cycle count

wallcyclecount++;

if (wallcyclecount == wallnumcycles){

// Check Pacman if attemped to get inside ghost chambers...

if (_root.insideChamber == true) {

_root.pacY = 14;

// Update Pacman Y coord wrt Maze.

_root.insideChamber = true;

}

//... No, Pacman just did a regular wall pass....

else{

wallpasscount--;

// Decrement wall passing power

// Update pacX and pacY values on new location.

pacX = beyondX;

pacY = beyondY;

}

// Update wall pass success flag;

wallsuccess = true;

// Reset default values for reference variables during wall passing.

wallpassprocess = false;
// Tracks if wall-passing is started or not (used to prevent unnecessary turns while passing through a wall).

wallcyclecount = 0;

// Tracks number of cycles of reanimating Pacman during wall passing.

wallnumcycles = 6;

// Number of cycles to complete wall passing.

wallcoord = 6;

// Coordinate value to add/subtract during wall passing.

}

}

}

// PURPOSE: For animating the ghost with respect to Pacman movements within the Maze.

// ---

function animateGhosts() {

// Animate Ghosts 1-4

unBlue = false;

for (g=1; g<5; g++) {

with (Ghost[g]) {

// Countdown Ghost being blue (i.e. after Pacman ate Power Pill)

if (ghBlue && _currentframe == 2) {

if (ghBlue == 50 || ghBlue == 40 || ghBlue == 30 || ghBlue == 20 || ghBlue == 10) {

c.setRGB(0xFFFFFF);

e.setRGB(0xFF0000);

}

else if (ghBlue == 45 || ghBlue == 35 || ghBlue == 25 || ghBlue == 15 || ghBlue == 5) {

c.setRGB(0x0033FF);

e.setRGB(0xFFFFFF);

}

else if (ghBlue == 1) {

gotoAndStop(1);

c.setRGB(cOrig);

ghFast = true;

}

}

gTest = false;

if (ghPos == 0) {

// Check if Ghost is going through "tunnel"

if (Maze[ghX+1][ghY] == "L" && ghDir == 3) {

ghX = 29;

ghNX = 28;

_x = OFFX + 348; // Pills offset + 12*ghX

}

else if (Maze[ghX-1][ghY] == "R" && ghDir == 1) {

ghX = -2;

ghNX = -1;

_x = OFFX - 24;

}

else if (ghX > 0 && ghX < 27) {

// Choose a new direction for the ghost...

for (i=0; i<4; i++) {

ghMove[i] = 1;

}

// Cannot move where ghost has just been

oppDir = ghDir<2 ? ghDir+2 : ghDir-2;

ghMove[oppDir] = 0;

// Cannot move into a wall!

if (Maze[ghX][ghY-1] == "#") ghMove[0] = 0;

if (Maze[ghX+1][ghY] == "#") ghMove[1] = 0;

if (Maze[ghX][ghY+1] == "#") ghMove[2] = 0;

if (Maze[ghX-1][ghY] == "#") ghMove[3] = 0;

// Set up possible moves into ghChoice array

pos = 0;

for (i=0; i<4; i++) {

ghChoice[i] = -1;

if (ghMove[i]) ghChoice[pos++] = i;

}

bestXDir = -1;

bestYDir = -1;

if (Shape._visible && _currentframe == 1) { // Alive Ghost, so hunt Pacman

testX = pacX;

testY = pacY;

}

else { // Dead Ghost, so go back to box

testX = 13;

testY = 11;

}

// Find best move

if (testX < ghX) bestXDir = 3;

else if (testX > ghX) bestXDir = 1;

if (testY < ghY) bestYDir = 0;

else if (testY > ghY) bestYDir = 2;

// Can the Ghost make one of these best moves?

best = 0;

for (i=0; i<pos; i++) {

if (ghChoice[i] == bestXDir || ghChoice[i] == bestYDir) ghBest[best++] = ghChoice[i];

}

// Randomly choose a possible move (preferably the best)

if (best == 0 || (Shape._visible && !random(3))) ghDir = ghChoice[random(pos)];

else ghDir = ghBest[random(best)];

// Control Ghost speed (pair must be multiple of 12, i.e. 4x(2+1) or 2x(5+1))

if (ghFast) {

ghStep = 4;

ghPosMax = 2;

}

else {

ghStep = 2;

ghPosMax = 5;

}

// Control Ghost movement

gNum++;

if (ghX == 13) { // Going out of box

if (ghY > 11 && ghY < 15) {

if (Shape._visible) {

gTest = true;

ghDir = 0;

if (gNum < 4) _y -= 2;

}

else if (ghY == 13) {

// Show Ghost again (not just Eyes)

unBlue = true;

numEyes--;

Shape._visible = true;

Shape.Hit._visible = true;

}

}

else if (ghY == 11) {

if (gNum == 1 && g == 1) _x -= 2;

if (gNum == 4) {

ghPos = 2;

if (ghFast) _x += 2;

else _x -= 2;

}

if (!Shape._visible) {

gTest = true;

ghDir = 2;

}

}

}

if (ghY > 11 && ghY < 15) { // First moves out of box

if (ghX == 11 && gNum == ghPause + 2) {

gTest = true;

ghDir = 1;

gNum = -1;

}

if (ghX == 15 && gNum == 2*ghPause + 2) {

gTest = true;

ghDir = 3;

gNum = -1;

}

}

}

}

// Set up the Ghost's next move

setGhMove(ghDir, g);

if (!(ghPos == 0 && Maze[ghNX][ghNY] == "#") || gTest) {

// Move Ghost

if (ghNX < ghX) { _x -= ghStep; ghPos--; }

else if (ghNX > ghX) { _x += ghStep; ghPos++; }

else if (ghNY < ghY) { _y -= ghStep; ghPos--; }

else if (ghNY > ghY) { _y += ghStep; ghPos++; }

Eyes.gotoAndStop(ghDir+1);

// Update ghPos, ghX and ghY

if (ghPos < 0 || ghPos > ghPosMax) {

if (ghPos > ghPosMax) ghPos = 0;

else if (ghPos < 0) ghPos = ghPosMax;

ghX = ghNX;

ghY = ghNY;

}

}

// Validate if Pacman has hit Ghost

if (Shape.Hit._visible && Pacman.Hit.hitTest(Shape.Hit) && !newLev) {

if(_currentframe == 1) { // Pacman has hit Ghost

_root.stop();

playing = false;

Pacman.gotoAndPlay("Die");

// Do not show any instances of Ms. Pacman.

noHelpMsPacman();

_root.msPacman._visible = false;

}

else { // Pacman has eaten Ghost via Power Pill

BGSnd.BlueGh.stop();

ghKill *= 2;

score += ghKill;

ghFast = true;

if (ghPos > ghPosMax) ghPos = 0;

else if (ghPos < 0) ghPos = ghPosMax;

// Turn Ghost into Eyes

if (notMute) Snd.gotoAndPlay("EatGhost");

gotoAndStop(1);

numEyes++;

Shape._visible = false;

Shape.Hit._visible = false;

c.setRGB(cOrig);

with (Ghost["K"+g]) {

_x = Ghost[g]._x;

_y = Ghost[g]._y;

Scr.kval = ghKill;

play();

}

}

}

}

}

}

// PURPOSE: For playing background sound.

// ---

function startBGSnd() {

tellTarget (BGSnd) {

if (_root.ghBlue>2) {

if (_root.numEyes) {

EyesGh.start(0,100);

BlueGh.stop();

}

else {

EyesGh.stop();

BlueGh.start(0,100);

}

}

else {

BlueGh.stop();

EyesGh.stop();

eval("Back"+_root.bgNum).start(0,1000);

}

}

}

// PURPOSE: For setting up the Maze for tracking location of Pacman and ghosts.

// ---

function mapMaze() {

// m is temporary string version of maze map

m =

"############################"+

"#............##............#"+

"#.####.#####.##.#####.####.#"+

"#O####.#####.##.#####.####O#"+

"#.####.#####.##.#####.####.#"+

"#..........................#"+

"#.####.##.########.##.####.#"+

"#.####.##.########.##.####.#"+

"#......##....##....##......#"+

"######.##### ## #####.######"+

"######.##### ## #####.######"+

"######.## ##.######"+

"######.## ######## ##.######"+

"######.## # # # ## ##.######"+

"L . # # # ## . R"+

"######.## ### #### ##.######"+

"######.## ######## ##.######"+

"######.## ##.######"+

"######.## ######## ##.######"+

"######.## ######## ##.######"+

"#............##............#"+

"#.####.#####.##.#####.####.#"+

"#.####.#####.##.#####.####.#"+

"#O..##....... ##..O#"+

"###.##.##.########.##.##.###"+

"###.##.##.########.##.##.###"+

"#......##....##....##......#"+

"#.##########.##.##########.#"+

"#.##########.##.##########.#"+

"#..........................#"+

"############################";

// Set up Maze array

for (i=-1; i<29; i++) {

Maze.attachMovie("Empty", i, i+1);

}

// Set up components of array and draw pills

pos = 0;

for (j=0; j<31; j++) {

for (i=0; i<28; i++) {

Maze[i][j] = m.charAt(pos++);

pill = false;

if (Maze[i][j] == ".") {

pill = true;

Maze[i].attachMovie("Pill", "P"+j, pos);

}

if (Maze[i][j] == "O") {

pill = true;

Maze[i].attachMovie("Power", "P"+j, pos);

}

if (pill) {

with (Maze[i]["P"+j]) {

_x = OFFX + 12*i;

_y = OFFY + 12*j;

}

}

}

}

}

GAME Scene, Frame 2 source code

// Initialize game

initGame();

// Check if a new level needs to be started.

if (newLev) {

newLev = false;
// Set back to false because new level state is already acknowledged.

bgNum = 1;

// Background sound number (1-3)

pillEat = 0;

// Set count for pill eaten to zero.

pillsConsumed = false;
// FALSE since pillEat is 0; only TRUE when pillEat == 244.

// GAME SCENE SINGLE EXIT POINT:

// Check if level can exceed the max number specified when finished by user....

if ((_root.level + 1) > (_root.gameMaxLevel)){

Pacman._visible = false;

if (msPacmanRescued) gotoAndStop("Extra", 1);
// Show frame congratulating user that he has completed the game!

else gotoAndStop("Extra", 2);

//

}

// GAME CONTINUES:

else
//... game still cannot exceed the max number specified. So, continue...

{

level++;

// Increment level

if (_root.level == _root.gameMaxLevel) _root.lastLevel = true;

if (ghPause > 4) ghPause -= 4;

if (ghBVal > 2) ghBVal -= 10;

if (fruitNum < 14 && (!_root.lastLevel)) {

// Check if treat index is still OK...

fruitNum++;

// ... set index for the next treat

}

else {

// Otherwise, ...

tellTarget ("Fruit") {

// ... set index at the first frame of movie clip.

gotoAndStop(1);

}

}

initVars();

// Initialize variables used by the level.

if (!newGame) {

for (g=1; g<5; g++) {

// Hide Ghosts initially

Ghost[g]._visible = false;

}

Pacman._visible = false;

BGSnd.gotoAndPlay("NewLev");
// Plays new level sound with Level splash on the screen.

}

}

}

// Check if new life is needed.

if (newLife) {

newLife = false;

// Reset new life flag.

Ready._visible = true;

// Show 'Ready' on the maze.

lives--;

// Decrement count of life availability.

if (lives == 0) {

// If no life available....

Pacman._visible = false;

Ready.gotoAndStop("GameOver");
// ... show 'Game Over' on the maze.

}

else {

// Otherwise,...

eval("Life"+lives)._visible = false;
// ... update life display.

initVars();

// ... initialize level variables.

BGSnd.gotoAndPlay("NewLife");

// ... play sound for new life.

}

}

if (newGame) BGSnd.gotoAndPlay("NewGame");

// Play intro music.

GAME Scene, Frame 3 source code

// THE GAME LOOP

// Note: The order of condition checking is important !!!

// When on last level and all pills are eaten, always ensure that the key to ghost chamber is present....

if ((_root.level == _root.gameMaxLevel) && (_root.pillsConsumed) && (!_root.hasKey) && (!_root.msPacmanRescued)) chamberKey._visible = true;

// Set Pacman to 'move' on the Maze.

animatePacman();

// When all pills are not consumed and the game is not on its last level...

if (!_root.pillsConsumed && !_root.lastLevel) {

// Determine appropriate Pacman treat

tellTarget ("Fruit") {

// Check if current frame is 1 ...

if (_currentframe == 1) {

if (!random(600)) gotoAndStop(_root.fruitNum); //... show treat on TRUE condition.

}

// Otherwise, check if Pacman ate a treat.

else if (fCount) {

if (hitTest(_root.Pacman.Hit)) {

gotoAndStop("Show");

// ... jump to movie clip frame that handles scoring.

}

else fCount--; // Count down the time that shows the treat.

}

else gotoAndStop(1);

}

}

// When all pills are consumed and game is on its last level ...

else {

if (_root.pillsConsumed) {

// Control display of key on treat area after Pacman retrieves it.

if ((pacX == 14) && (pacY == 17) && (!_root.hasKey)){

// chance to win the game ---KEY TO GHOST CHAMBER HAS BEEN RETRIEVED!

_root.hasKey = 1;

chamberKey._visible = false;
//... no need to display the key graphic.

}

// Determine if chamber gate needs to be opened or not as user invokes it ...

if ((pacX > 8 && pacX < 19 && pacY == 11)&& _root.hasKey && _root.wallpasskeypressed) {

//... Ghost chambers is opened if Pacman retrieved the Key.

blankGate._visible = true;

// 'No gate' at ghost chamber.

}

else {

blankGate._visible = false;

// 'Gate closed' at ghost chamber.

}

// Set-up condition that Ms. Pacman has been rescued in order to exit the game scene.

// Note: Pacman coordinates below, when satisfied, is within the ghost chamber.

if ((pacX == 13 || pacX == 14) && (pacY == 14) && _root.hasKey) {

//... FINALE! The conditions needed to proceed to the 'Congratulations' frame.

msPacmanRescued = true;

newLev = true;

gotoAndStop("Restart");

}

}

}

// Count down of 'blue' state for ghost if such condition exists.

if (ghBlue) ghBlue--;

// 'Move' the ghosts on the Maze.

animateGhosts();

// Background sound handler for blue/eye Ghosts

if (ghBlue && notMute) {

with (BGSnd) {

if (ghBlue == 1) {

BlueGh.stop();

EyesGh.stop();

eval("Back"+bgNum).start(0,1000);

}

else if (unBlue && !numEyes) {

EyesGh.stop();

BlueGh.start(0,100);

}

}

}

showMsPacman(); // Check if OK to show Ms. Pacman in ghost quarters calling for help.

lastScore = score;

if (!playing) stop();

if (quit) gotoAndStop("Front", "Menu");
GAME Scene, Frame 4 source code

gotoAndPlay ("Loop");

GAME Scene, Frame 5 source code

// Show game assessment if Ms. Pacman is not rescued.

if (!_root.msPacmanRescued){

gotoAndStop("Extra", 2);
// frame shows the game assessment.

}

EXTRA Scene, Frame 1 source code

// This frame is only shown when Ms. Pacman is rescued.

stop();

EXTRA Scene, Frame 2 source code

// This frame is only shown when player fails to complete the game.

if (_root.level < 3) _root.advice = result1;

// Assessment if level is below median.

if (_root.level == 3) _root.advice = result2;

// Assessment if level is equal to median.

if (_root.level > 3) _root.advice = result3;

// Assessment if level is above median.

Power pellet

Pacman

Executive Summary

1

Product Specification

2

User Guide

3

Game Specification

 4

Design Specification

 5

APPENDICES

 6

Ghosts’ Chamber

Ms. Pacman crying for help

Ghost looking for Pacman

Chamber gate

Pill

Treat display area

Game Score

Spare Lives Available

Current Game Level

Ghosts looking for Pacman

‘Pass-through-wall’ power available

Magic key status:

 0 – Not yet retrieved

 1 – Retrieved already by Pacman

LOSER

WINNER

(Provide Post-Game assessment)

MENU

(Congratulate player)

MENU

(Game control information)

(Information about the game)

MENU

MENU

ABOUT

CONTROLS

PLAY

TITLE / LOGO

Menu / Initial Screen

Game Interface

Post- Game Interface

Post- Game Interface

Game outcome determines post-game interface.

User Selection

User Selection

� EMBED Word.Picture.8 ���

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

END OF GAME PLAY

GAME LOOP

MENU BUTTON SELECTED?

MENU BUTTON SELECTED?

MENU BUTTON SELECTED?

MENU BUTTON SELECTED?

QUIT GAME ?

NO

YES

NO

YES

NO

YES

NO

YES

DISPLAY POST-GAME ASSESSMENT

DISPLAY MESSAGE FOR WINNER

CONTINUE GAME / SCORING / PROCEED TO SUCCEEDING LEVEL

LIVES == 0?

MAIN OBJECTIVE ACHIEVED ?

START GAME / LEVEL

PLAY BUTTON SELECTED?

CONTROLS BUTTON SELECTED?

ABOUT BUTTON SELECTED?

DISPLAY GAME TITLE AND MENU CHOICES

START

DISPLAY CONTROL INFORMATION

DISPLAY GAME INFORMATION

_1095089165.doc
[image: image1.png]Try Again

You ran out of luck before
you can finish the game.

Your score:

10840

Cwew

