
Pran Mukherjee

CIS 587

Assignment 4

Game Design Document

Countdown to Elimination

Table Of Contents

1

1. Executive Summary

1.1 Game Story Abstract
1

1.2 Game Play- Rock-paper-scissors
1

1.3 Game Appearance
2

2. Product Specification
3

2.1 Production Team and Schedule
3

2.2 Target Audience
3

2.3 How Long Does It Take To Play?
3

2.4 Production Tools
3

3. Game Specification
4

3.1 What is the game like to play?
4

3.2 Game Flow and Screenshot
6

3.3 Summary of the story line
7

4. Design Specification
9

4.1 Data Structures and Game Objects
9

4.2 Algorithms
9

4.2.1 Counters and Thresholds
9

4.2.2 Torpedo Tracking
10

4.2.3 Enemy Spawning
11

4.2.4 Fighter Groups
12

4.2.5 Floater Energy Reflection
13

4.2.6 Powerups
13

5. User Guide
15

5.1 System Requirements
15

5.2 Installation Instructions
15

5.3 How to Play The Game
15

5.3.1 Your Mission
15

5.3.2 Keyboard Controls
15
5.3.3 Game Statistics and Scoring
15

5.3.3.1 Weapon Types and Upgrades
16

5.3.3.2.EnemyTypes
16

1. Executive Summary

This space-warfare game is called Countdown to Elimination. The premise is simple: wave after wave of alien spacecraft are trying to destroy the Earth. You must stop them!

Due to violent content, this game is targeted at the 10 and above bracket. The action will be quick, requiring good reflexes, and games will be short enough that one can play for a few minutes or hours per session without feeling like it’s a waste of time.

Each level will get faster and tougher as well, so accomplishment may not be based solely on score. Level reached, especially at higher levels, is worth keeping track of.

1.1 Game Story Abstract

In 2257 Voyager V was launched. Its pre-programmed itinerary crossed paths with a hostile alien species that followed it home. Now they’re coming to destroy Earth as possible future competition.

Their scouts followed the probe back to Earth, unfortunately not finding any other species on the way to divert their attention. Upon finding the Sol system, all but one of the scouts about-faced and returned home for the battle fleet. (That one unlucky scout was killed, and its shield generator was scavenged for your ship!)

Luckily, they didn’t take into account the differing drive capacities of their fleet, so it came in piecemeal, which allows the valiant defenders of the planet (you) a chance to destroy as many as possible. The longer you can hold out, the more colony ships can escape Earth for other systems, allowing the species to continue.

1.2 Game Play

This is a fairly standard space shoot-em-up. The player controls a spacecraft armed initially with a plasma spray, the best technology Earth is capable of. Defenses include the ship’s automatic repair facility and a captured alien deflector shield. As the player engages and defeats enemies, some of them will leave modular power-ups that enhance the power of the cannon and shield and even add new weapons. There are three weapon types: plasma spray, laser cannon, and homing torpedoes. These will each be best used against one of the three enemy types in a rock-paper-scissors paradigm.

The enemy types are:

1) small, fast, unarmed, and weak group-kamikaze fighters

2) large, slow, strongly-shielded Hiveships that shoot back

3) small, slow, unarmed floaters that reflect energy attacks 70% of the time

The plasma spray is meant for killing groups of fighters quickly, the laser for dealing massive damage to single targets like the Hiveships, and the torpedoes, a non-energy weapon, hunt down and kill the floaters.

Shield power-ups just give a lump-sum increase to their damage-soak capacity.

Each level has a limited number of enemies. This amount increases per level. The enemy whose score beats a certain threshold drops a powerup. There are bonus points for killing entire groups of fighters.

The shape of the game changes as levels advance. At first, the fighters are the primary threat, but eventually they are replaced by the Hiveships, which grow more deadly at later levels. The floaters maintain their basic defensive property, which can be very dangerous at any level.

There is no victory condition. This is Earth’s Countdown to Elimination, and the only goal is to keep the enemy away from the planet as long as possible to allow the colony ships time to flee.

1.3 Game Appearance

I used a fairly standard 2D, top-down format with a fixed starscape as the background, because the player waits for the enemy to come to him. Player and enemy movement within the visible playing screen area will be relative to the fixed background. The player can’t leave via any edge, and vertical motion will be within a limited area. The enemy fighters can go wherever they want, though the Hiveships and floaters hang back for the most part.

Text markups are along the top and bottom edges of the screen area. They indicate game level; weapon levels and reserves; remaining lives, hull and shield points; and score. The active weapon is in red, and if shield or hull points go below a critical threshold, they flash red as well. Text will come up in the middle of the screen to indicate level up, free life bonus, and game over, and killing an entire fighter group will drop a fading text indicator of the group bonus.

A screenshot is in the Game Specification section below.

2. Product Specification

2.1 Production Team and Schedule

I am the only developer for this product. However, I owe thanks to my friend Derek Nylen for letting me bounce ideas off him during the design. Also, Dave Morris, Justin Wojdacki, Len Smith, and Derek Nylen helped with the playtesting.

I started the design around the beginning of November, and did most of the coding over two weeks in late November and early December. Beta testing, balance tweaks, and a few additional features took another week or so. This will be done by December 19th for the game fair.

2.2 Target Audience

The game is intended primarily for teens and adults. It requires a certain level of manual dexterity. Controls are the arrow keys for movement, left control for attacks, space-bar and number keys for weapon toggle/selection. The challenge is using all of them simultaneously.

2.3 How Long Does It Take To Play?

Games last as long as a player can make them. Each level should take about 2-5 minutes. Later levels take longer because there are more enemies to fight. There are no save games, but since games are rather quick a player can interrupt a game without feeling like he’s lost much. The game can also be paused if the interruption is expected to be brief.

2.4 Production Tools

The game was developed with the DirectX 7 components under Visual C++ 6.

I used bitmaps, sounds, and music from Andre Lamothe’s CD, mostly from the game “Outpost”. I used Paintshop Pro to modify or create the graphics I couldn’t use directly.

3. Game Specification

3.1 What is the game like to play?

This is standard space-shooter fare. Everything from Space Invaders to Battle Squadron followed this model, so it should be familiar to all. The twist is the rock-paper-scissors nature of the weapons and enemies, and the reserve capacity. Each enemy type has a particular Achilles Heel, and exploiting that can make the game much easier.

Each level contains a greater amount of enemies than the last, and they spawn in progressively larger groups. The competition is only for score and/or level achieved.

The enemy types, as listed above, are:

1) small, fast, unarmed, and weak group-kamikaze fighters

2) large, slow, strongly-shielded Hiveships that shoot back

3) small, slow, unarmed floaters that reflect your energy attacks 70% of the time

The level 1 plasma spray the player starts with is an adequate weapon, but not stellar. The game is really about collecting powerups. The easiest way is to kill an entire fighter squadron, because the bonuses for doing so are large. Note that if even one squadron member escapes off the map (a randomly timed function) or successfully rams the player, the bonus for that squadron is lost. Floaters, too, are worth quite a bit, but are hard to kill. The maximum level for any weapon is 3, and for shields 200. The ship hull auto-repairs to 100, its maximum. Going up a level gives an automatic, random powerup of a needed type.
The plasma spray is specifically targeted to the kamikaze fighter squadrons, and a single blob kills a fighter. The spread allows targeting of entire squadrons. Plasma powerups increase the number of shots and ROF.

The laser, especially at level 3, is devastating against the large, armed Hiveships. The concentrated damage will kill them rapidly. Laser powerups allow faster shots, ROF, and more damage per shot.

The guided torpedoes are meant for the floaters, which reflect any ENERGY shots, but not the torpedoes. They shoot out with high launch velocity, then go into target acquisition mode and follow the nearest enemy until they hit something (not necessarily their target) or run out of fuel and self-destruct. Torpedo powerups increase the number of torpedo tubes, fuel capacity of torpedoes, and ROF.

Every powerup, whether needed or not, is worth points, and that number in parenthesis after the weapon level is "reserve" powerups, ones collected after maxing out the weapon. Each reserve point is a 1 in 20 shot of getting a free powerup AFTER losing a life! New ships don’t have to start out helpless. Also, a set percentage of the number of reserves is added to the damage of each weapon. (10% for laser, 20% for plasma, 100% for torpedo).

Extra lives are gained every 500,000 points. That is approximately 4-6 levels.

Early on, the most dangerous foes are the fighter squadrons and floaters. The fighters are everywhere, and kamikaze hits do a lot of damage. The floaters reflect a very large percentage of energy shots, so if a player suddenly starts taking massive damage, a floater is probably nearby.

At later levels, the Hiveships become the most dangerous. Their weapons adapt to ship defenses, so as levels go up they do more damage. Another level-based increase is the size of fighter squadrons, and therefore the total number of enemies onscreen at once; also, with larger groups, powerups come less often.

The most important powerups to get are the shields, since that's what keeps ships safe. Even with a single hull point, survival is possible when a shield powerup buys time for the hull to regenerate!

Game Flow and Screenshots

The game is very linear. First there’s an intro screen, which fades to the game backdrop. On the backdrop, a text introduction scrolls up and waits for the player to move to the next screen, an info and command-list screen. From there, the player starts the game. The game and info screens are shown below. When your last ship dies, a “game over” message pops up with the option to restart. I had intended to have a high-score capability, but during implementation I concentrated on adding game features and testing game flow instead. Feedback from my playtesters allowed me to improve the game significantly after the beta.

Notes about the game screen shot:

1) The selected weapon, plasma, is in red while the rest are in green.

2) The floater deflected some plasma shots (out of line).

3) The torpedoes are in target tracking mode (see the thrust in the sprites)

4) The player was just hit by a boss shot, which is why the shields are up

5) The laser and torpedo levels are maxxed out, and the player has collected additional powerups as shown in the parenthesis. These will each be worth a 5% chance to a free powerup for their next life.

[image: image1.png]Score: 00035000 Hull: 100 Shields: 30 Lives: 3

Plasma: 1(0) @ Laser: 3(10) Torpedo: 3(5) Level: 1

[image: image2.png]The Alien Menace
' Floater: The fleet-defense ships. They project a large field that reflects most

of your energy attacks (plasma and laser). Killed easiest with torpedoes.
: The alien motherships. Their heavy armor makes them hard to

Hiveship
Kill. The laser is best for this purpose, doing heavy damage in a short time.
They are armed with particle cannons that adapt to your defenses over

time, doing more damage.

Fighter: The footsaldiers of the alien armada. They are kamikaze ships that
R come in variable-size squadrons. The swarms are best killed with plasma
spreads, since a few shots can kill many. Don'tlet them ram you!

The Defender's Arsenal

Earthforce Phantom VII: Modular intercepter design. Capable of self.repair and
modification. Shown with captured alien defensive shield activated. Can

scavenge components from destroyed enemies.

. . Modular Powerups: Plasma, Laser, Torpedo, and Shield components that drop from
destroyed enemy vessels. Can be incorporated by the Phantom VIl. Between

enemy waves, Earthforce techs also take time to improve the vessel.

Kevboard Controls
Movement: Arrow Keys Toggle Weapol

Space Toggle Info:

Left Control Select Plasma: 1 Help Screen: H
P Select Laser: 2
Exit Game: Escape Select Torpedo: 3

Press <N> (re)enter the game

Help screen (shown before game and accessible in-game via <H> key)

3.2 Summary of the story line

Voyager V was sent out to the stars on August 9th, 2257 by the Interstellar Exploration Corps (IEC). Its design incorporated a first generation FTL drive and a pre-programmed itinerary, and it was to visit and scan a dozen star systems before coming home, broadcasting a greeting message to any alien life it found.

Unfortunately, the only life it found was rapacious and hostile. In the Rigel system, the probe found evidence of asteroid mining and heavy electromagnetic communication, so it broadcast the IEC greeting as programmed. The residents of the system saw this as an opportunity to find another advanced, resource-rich species… and destroy them! They don’t like competition.

Their scouts followed the probe back to Earth, unfortunately not finding any other species on the way to divert their attention. Upon finding the Sol system, all but one of the scouts about-faced and returned home for the battle fleet. (That one unlucky scout was killed, and its shield generator was scavenged for your ship!)

Luckily, they didn’t take into account the differing drive capacities of their fleet, so it came in piecemeal, which allows the valiant defenders of the planet (you) a chance to destroy as many as possible. The longer you can hold out, the more colony ships can escape Earth for other systems, allowing the species to continue.

4. Design Specification

4.1 Data Structures and Game Objects

Due to the nature of the Lamothe engine, most of the objects are global arrays of BOBs (Blit OBjects). They are as follows: lasers, plasmas, torpedoes, powerups, fighters, hiveships, and bursts. There is also a single floater BOB, and arrays of fighter groups, stars, and particles.

I used the code from “Outpost” on the Lamothe CD for particles, stars, and bursts, so I won’t go into that here.

For most of the remaining object groups I used a set group of functions: Init, Reset, Fire/Start, Draw, Move, and Delete. The Init functions were each called once from the game_init routine, and simply load graphics and set start conditions. The Reset routines reset the start conditions when needed, such as level-up, game reset, player death. The Delete functions are called in the game_shutdown routine only, the Fire/Start when needed, and the Draw and Move functions every frame.

The BOB structure has an array of ints that can be used for any purpose a coder likes, so I set up a list of const-defined indices into the array and const-defined state values. For some purposes such as remaining hit points or torpedo target and fuel count I used dynamic values rather than constant. For all object states I used STATE_ON and STATE_OFF (1 and 0) to determine whether or not they were active or available/dead.

4.2 Algorithms

4.2.1 Counters and Thresholds

For most timed or intermittent events, I used const-defined thresholds and variable counters. This included, among other things, player hull regeneration, weapon rate of fire, determining when to drop a powerup or free-life, how long to display text for fighter group bonuses and level-up, and torpedo fuel. In general terms, the threshold was set on creation of the game or object, and a counter was set to 0. The counter would iterate with each frame until reaching the threshold, upon which the event happens and the counter resets. Some, such as the fighter group bonus timing, were countdown rather than count-up. Weapon ROF was one of the only thresholds that would change during the game, because some powerups increased the ROF, which I implemented by lowering the delay threshold.

4.2.2 Torpedo Tracking

The torpedoes were a bit of a challenge. I started out using Lamothe’s mine-tracking code from the Outpost game, but it didn’t quite fit my needs. I wanted the torpedoes to launch with high velocity on ballistic courses, then after reaching a certain distance become homing weapons. That allows players to target the torpedoes to some extent rather than have them lock onto the closest enemy, which is almost always a fighter. The target acquisition step occurs after the torpedo reaches a set distance from the player (200 pixels).

The target tracking was accomplished by giving every single enemy a unique ID number. Since I already had a counter to keep track of enemies remaining before the level is done, I used that for the target ID. Each enemy spawn decremented that counter, so no two enemies could have the same number. Then, once the torpedo has a target, it can search through the lists of enemies for the target with that ID every move step. The actual tracking code is the same as used by Lamothe. The Move_Torpedoes pseudocode looks like this:

void Move_Torpedoes(void) {

for (all active torpedoes) {

move torpedoes along existing trajectory

if (torpedo tracking == STATE_ON) {
// Torpedo already has a target

Find the target and get the direction from the torpedo:

if (floater.state == STATE_ON) Test the floater’s id

for (all hiveships)

if (hiveship.state == STATE_ON) Test hiveship id

for (all fighters)

if (fighter.state == STATE_ON) Test fighter id

if target not found (i.e. dead), turn tracking state to STATE_OFF

Given direction to move, pick animation frame to display:

1) find slope of line from torpedo to target

2) given that slope, find which sector the target is in of the 16 (cos_lookup16, sin_lookup16)

Lamothe’s tracking code goes here

else { // Torpedo doesn’t yet have a target

Calculate distance from player

if (distance > TORPEDO_ACTIVATION_DIST) {

Find nearest target (order irrelevant):

1) check the floater, if on

2) check the hiveships

3) check the fighters

Set torpedo to track best target:

1) Torpedo.tracking = STATE_ON;

2) Torpedo.target = best_target;

}

Decrement fuel counter, test if it ran out, blow it up if so

Test for collisions with all targets.

If (hit target) start explosion, deal area damage, test for deaths

} // end Move_Torpedoes

The plasma and laser move routines were the same from the Test for collisions part on.

4.2.3 Enemy Spawning

The enemies were spawned based on quite a few criteria:

1) counter for enemies remaining in the level above 0

2) living enemies at or below a given threshold (15)

3) rand%50==0 (This was to truly randomize the spawn times)

If these conditions are met, the game tries to spawn an enemy. Each enemy type has a given percentage of appearing, and are tested for in order:

Fighter Group: 70%

Floater: 5%

Hiveship: 25%

Since the array size for each type of enemy are fixed (1 floater, three hiveships, and 24 fighters), it will test if the type is available, and spawn if so. If not, it tries again with a new random seed up to five times, then waits for the next time the above conditions are met to try again.

Enemies are spawned in random locations, with the exception of fighters (see below).

4.2.4 Fighter Groups

Fighter groups are handled slightly differently from the other two enemy types. When the spawn code chooses to bring in a fighter group, it has to fill the following structure:

typedef struct F_GROUP_TYP {
// used to contain info on fighter-group

int value;

// bonus for killing whole group

int num_alive;

// number of living members

int num_killed;

// number killed by player

int text_counter;

// counter to show bonus when last is killed

int text_x, text_y;

// on-screen location for bonus text

int sx, sy;

// initial location of group members

int vx, vy;

// initial velocity of group members

int spawns;

// number of members left to spawn

int spawn_time, spawn_counter;
// spawn time and counter

int lifespan;

// How long fighters stick around

} F_GROUP, *F_GROUP_PTR;

First it finds an empty group (i.e. one with no remaining fighters) from the array. There are 8 groups allowed at a time. If it finds an empty group, it sets the value and num_alive fields to 0, picks a random side of the screen to start on, random height, velocity, and lifespan (which is only relevant if a fighter isn’t quickly killed), and sets the spawn time. The spawn time is the delay between entrance of each fighter to the screen. The number of fighters in the group is also randomly picked, as follows (as you can see, groups grow as levels go up):

int size = RAND_RANGE(2,5)+RAND_RANGE(1,level);

In the main game loop, after all the moving, firing, and keyboard testing is done, it checks each fighter group to see whether or not all the fighters have been spawned yet. If not, and the counter says it’s time for another, a new fighter is spawned at the location and velocity indicated by the group (plus a random factor), and counters are reset/decremented as needed.

Also, after this, it tests each group’s text_counter field, which is set when the last fighter in a group is killed, IF num_killed = value/1000 (i.e. the player killed all of the fighters with his weapons). If the text_counter is on, it displays the bonus onscreen and decrements.

4.2.5 Floater Energy Reflection

The floaters the most important units in the game. They are the hyper-powerful defensive element of the enemy fleet. This is because they project a field that reflects the player’s energy attacks. This is implemented as follows:

Each laser or plasma shot has a field called INDEX_REFLECT_TEST, initialized to STATE_OFF on creation.

During the movement stage of each shot, the first collision test is with the floater’s reflection radius. This is centered on the floater, and has a 150 pixel radius. If the shot hits this field, the reflection field is still STATE_OFF, and rand%()100 < 70 (the reflection percent), the shot is reflected with a small velocity randomization and the field set to STATE_ON. This way, the shots are only tested once, on initial contact with the field.

After this, they are tested for collision with the floater, hiveships, fighters, AND player ship every frame, but never again with the floater reflection field.

4.2.6 Powerups

Powerups are what the game is all about. The level 1 Plasma Spray players start with is weak. Powerups add new weapons, increase the power of weapons, and replenish shields. They are acquired under the following conditions:

1) The powerup counter (score-based, see 4.2.1) passes its threshold (10,000 points) via killing an enemy or the fighter group bonus

2) Player’s weapon reserve pays off after losing a life

3) Player gains a level

Under condition 1, the powerup is randomly chosen from the four possible types. If the player is maxxed out for that type of powerup, a second random number is chosen. This second choice powerup is dropped even if the player doesn’t need it. The pseudocode is below:

p_type = RAND_RANGE(0,3);

if (powerup_type == maxxed-out weapon/shield)

p_type = RAND_RANGE(0,3);

set powerup type field

If the player catches an unneeded weapon powerup, it goes in their reserves. The reserves for each weapon are listed on the game screen in parenthesis after the weapon level, and are each worth a 5% chance of getting a free powerup of that type after they die, for their next fighter (condition 2, below).

Condition 2 does the following:

for (each weapon type)

while (type_reserve-- > 0 && type_level < 3)

if (rand()%20 == 0) // 5% chance

give free powerup

Condition 3 powerups are guaranteed to be of a needed type (if any). First the plasma is tested, then the laser, torpedo, and shields, in that order. The first one that isn’t maxxed out is the type of powerup given for the level. This reflects the fact that Earthforce techs are installing it between enemy waves, and wouldn’t install unnecessary technology. Pseudocode below:

int p_type = RAND_RANGE(0,3);

if (p_type == 0) {

if plasma not maxxed, give plasma powerup

else p_type++;

}

if (p_type == 1) {

if laser not maxxed, give laser powerup

else p_type++;

}

if (p_type == 2) {

if torpedo not maxxed, give torpedo powerup

else p_type++;

}

if (p_type == 3) {

if shield not maxxed, give shield powerup

}

Weapon powerups do the following:

Laser—raise ROF, speed of shots, and damage per shot

Plasma—raise number of shots and ROF

Torpedo—raise number of shots, tracking mode speed, max fuel, and damage

4.3 Development Environment

The game was developed with Visual C++ version 6.0, DirectX 7, and the game-engine libraries on the Lamothe CD. The bitmaps were for the most part taken from Lamothe’s “Outpost” game or elsewhere on the CD, and as needed modified with PaintShop Pro. Sound effects and music also from the Lamothe CD.

5. User Guide

5.1 System Requirements

Countdown to Elimination requires Windows 9x/2k, DirectX 7.0, a midi compatible sound card, a video card with at least 1 MB of memory, 32 MB of RAM, and 3 MB of hard disk storage. It requires at least a 120 MHz Pentium processor. WinZip is also required to unzip the executable program and associated files.

5.2 Installation Instructions

Download the file Countdown.zip to a folder on your computer. Use WinZip (or another zip program) to extract the files into a new directory, keeping the directory structure inside the zip file intact. Double click on the file Countdown.exe. This will start the program.

5.3 How to Play The Game

5.3.1 Your Mission

Your mission is simple: kill as many of the invading alien armada as possible before you die. You MUST hold them back from the planet, allow the colony ships to make it into hyperspace, or humanity will be exterminated.

5.3.2 Keyboard Controls

Arrow Keys: move

Left Control: Fire

1: Select Plasma

2: Select Laser (if available)

3: Select Torpedo (if available)

Space: Toggle among available weapons

P: Pause/unPause

H: View Help screen

R: Restart when game over

Esc: quit game at any time

I: Toggle HUD on/off

5.3.3 Game Statistics and Scoring

Hull Points-
The structural integrity of your ship’s hull. Hits that get through your shields damage your ship, which starts with 100 hull points. This damage is repaired over time by your ship’s automatic repair facility. If your hull points fall below N, the value on the HUD flashes red, and you leave a damage trail.

Shield Energy- Your ship is equipped with a captured enemy shield generator. This is your first line of defense against battle damage. The shield-generator can project a defensive field with approximately twice the structural strength of your ship. You don’t have all the parts you need when you start, so the shield is not at full strength. Capturing shield powerups from defeated enemies allows your ships automatic repair facility to replace parts in the shield generator, strengthening the projected field. As the shield deflects damage, parts wear out, requiring further powerups.

5.3.3.1 Weapon Types and Upgrades

Plasma Spread- A basic, all-around useful energy weapon. It shoots groups of plasma blobs (initially 3) in an arc. Upgrades increase the number of blobs, arc width, and rate of fire. Damage: 25+plasma_reserves/5

Laser Cannon- A high-intensity, direct-fire energy weapon. It lacks the area-effect of the plasma spread, but can do hideous damage to single targets. Upgrades significantly increase the beam intensity and damage.

Base damage: 10+laser_reserves/10

Guided Torpedoes- Your only non-energy weapon, these torpedoes do significant damage to single targets. They have high launch velocity and coast away from your ship for a set period, then go into target acquisition and tracking mode to hunt down the nearest enemy. They have limited fuel, and self-destruct when they run out. Each upgrade gives you a single torpedo tube, for a maximum of three in a small arc. Upgrades also improve max fuel capacity, and tube cycle rate (rate of fire). This is also the only weapon type affected by reserve capacity, since the warheads can be overloaded slightly.

Damage: 100+torpedo_reserves

5.3.3.2 Enemy Types

Kamikaze Fighters- These fast little attack vessels are the backbone of the alien armada. They come at you in squadrons which get larger as the game progresses. They stick around for a limited time, and killing an entire group gives a large bonus. A successful kamikaze attack does 50 damage. Plasma spreads are very effective against entire squadrons.

Individual Fighters: 20 hp, 100 points

Squadron Bonus: 1000 points per fighter

Hiveships- These are the alien motherships. They are armed with particle cannon. Each wave sends back information about your defenses, and the particle cannon and targeting systems adapt to the defenses, so as levels go by they do more damage (20+level). Laser attacks rapidly peel away their armor and kill them.

Hiveship: 1000 hp, 5000 points

Floaters- These unarmed, slow vessels are an insidious threat. They are the alien fleet-defense ships, and as such they project a force field that reflects your energy attacks back at you! They show up out of nowhere and you start taking damage from your own weapons before you know it! Luckily, they’re fragile and rare, and non-energy attacks such as your torpedoes can easily destroy them.

Floater: 100 hp, 20000 points

1

