
03/16/01 Soar Tutorial

67

Part II: Subgoals
This part of the tutorial will teach you to build Soar programs that use subgoals to dynamically
decompose complex problems into simpler problems. This part starts with a description of TankSoar. This
is followed by an exercise where you will build a simple tank that wanders about. From there, subgoals
and high-level operators are developed. The intermediate sections teach you to write high-level
operators. The end concentrates on refinements of these operators so that your tank is more effective.

You should use Visual-Soar in developing your tank. The release includes default datamaps for the input
and output links so that you do not have to define these yourself.

1. TankSoar
TankSoar is similar to Eaters in that your Soar program will control a tank in a grid-based world with walls.
However, in TankSoar, your tank has many more sensors and many more actions than the eaters did.
There are also more interactions between tanks (they shoot at each other), and all of these factors mean
that the TankSoar programs can be much more complicated than those you developed for Eaters.

Below is an example of the main map in TankSoar.

The TankSoar world consists of a rectangular grid, 14 squares wide by 14 squares high. All four sides are
bounded by walls made of rock. Interior walls are made of trees. There are a variety of maps that can be
used, with different layouts of walls.

Each TankSoar agent controls one tank. The tank takes up one square in the playing field. A tank has
actions it can take, resources it carries, and sensors with which it observes its environment.

Borders made of stones

Red Tank

Walls made of trees

Energy recharger (battery)

Missile packs

Red Tank’s radar

Blue Tank being hit (Ouch!)

Health recharger

03/16/01 Soar Tutorial

68

1.1 Installing and Playing TankSoar
TankSoar can be downloaded from http://ai.eecs.umich.edu/~soar/tanksoar. For Windows machines, it is
a self-extracting binary and after you download it, you should double click on its icon. It will create a
TankSoar directory. In that directory will be the executable and the agents directory, which is where you
will create folders and files for Soar tanks.

Start the TankSoar game by double clicking on the TankSoar icon. After starting TankSoar, you will have
three new windows on your computer screen. One is the TankSoar Playing Board as shown above.

The second is the TankSoar Control Panel. The TankSoar Control Panel is the same as the Eaters
Control Panel, but with an additional button that allows you to create a tank that is controlled manually.

An alternative shortcut for creating manually controlled tanks is to hold down the CTRL key, while clicking
on the board. If you drag in a direction while clicking, the newly created tank will face in that direction.

If you click on the tank, you can then control it using the Manual Controls panel, which allows you to move
around the tank, turn it, fire missiles, or turn on its radar and shields. Manually controlled tanks are very
useful when you are trying to debug a Soar controlled tank that attacks or avoids other tanks.

Turn left Turn right

Move forward

Move left Move right

Fire missile

Radar on/off

Radar range

Fire missile

Shields on/off

Move back

http://ai.eecs.umich.edu/~soar/tanksoar

03/16/01 Soar Tutorial

69

1.2 Tank Resources
Each tank has three resources. A summary of these is shown for each tank on the left side of the Map
window.
• Health

A tank has a maximum of 1000 health points, and dies when its health goes to 0. When a tank dies, it
is resurrected at a random open square with the initial values of all of its resources (health=1000,
energy=1000, missiles=15). When created, a tank has 1000 health points, which decreases by 2
every turn. If a missile hits a tank while its shields are down, its health decreases by 400. A tank's
health is increased when it sits on a healthcharger at a rate of 150 per turn.

• Energy
A tank has a maximum of 1000 energy points. A tank's energy is decreased when it uses its radar
(proportional to the range it has set the radar) or when it uses its shields (20 units per turn). A tank's
energy is increased when it sits on an energycharger at a rate of 250 per turn. A tank's energy is
decreased by 250 if it is hit by a missile while its shields are up. If a tank’s energy goes to 0, it will not
be able to use its radar or shields until it recharges (or dies).

• Missiles
A tank starts off with 15 missiles. A tank's supply of missiles is increased by 7 when it picks up a pack
of missiles. A tank's supply of missiles is decreased by one each time it fires a missile.

03/16/01 Soar Tutorial

70

1.3 Tank Primary Sensors
A tank has six primary sensors for perceiving its world. All of these sensors are always active, except the
radar sensor, which must be turned on to use. The information from these sensors is made available to a
tank on the input-link. The structure of the input-link augmentation is shown for each sensor.
• Blocked sensor

The blocked sensor detects whether the squares immediately adjacent to a tank are blocked or open
(yes=blocked, no=open). A square can be blocked by an obstacle or by another tank, but the blocked
sensor gives no information to distinguish between these cases.
^blocked

^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

• Incoming sensor
The incoming sensor detects whether there is a missile approaching a tank at any distance, even if
the missile is on the other side of an obstacle and would not actually hit the tank. It does not detect a
tank's own missiles.
^incoming

^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

• Radar sensor
The radar is functional when a tank has turned the radar on and has enough energy to power it. This
sensor detects objects in front of the tank in a column that is three squares wide. The distance d
which the radar can see is either the current radar setting or the number of squares between the tank
and the closest blocking object (i.e. tank or obstacle) in front of it, whichever is lower. The objects
visible on the radar are those that are a distance of d squares or less away from the tank directly in
front of it, directly in front of one square to the left of it, and directly in front of one square to the right
of it. Radar also picks up any objects directly to the right or left of the tank. Additionally, if the effective
distance is greater than d, i.e. the radar is being blocked by an object, then the object(s) d+1 squares
directly in front of this tank is also visible on the radar. Multiple objects in the same square are visible
if their square is visible. The information returned about visible objects is their type and where they
were seen (e.g. an obstacle 5 squares in front on the left). If an object is a tank, then its color is also
given.
^radar

^energy
^distance 0-d
^position left/center/right

^health
^distance 0-d
^position left/center/right

^missiles
^distance 0-d
^position left/center/right

^obstacle
^distance 0-d
^position left/center/right

^open
^distance 0-d
^position left/center/right

^tank
^distance 0-d
^position left/center/right
^color red/blue/purple/…

03/16/01 Soar Tutorial

71

• Rwaves sensor
The rwave sensor detects if the radar of another tank is detecting the tank from the four directions.
^rwaves

^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

• Smell sensor
The smell sensors detects the closest tank, and provides information on how close that tank is and
what its color is. If there are two or more tanks equally close, then one of them is chosen at random.
The distance is the number of cells in x and y between the two tanks (Manhattan distance). Smell
penetrates obstacles, so the smelled tank may not be the tank that is closest to move to. If there are
no other tanks, the value of both color and distance will be none.
^smell

^color none/red/blue/purple/…
^distance none/0-28

• Sound sensor
The sound sensor detects the closest tank that moved during the last decision, as long as that tank is
currently 7 or less squares away. If two or more tanks moved during the last decision and are equally
close, then the sensor chooses one randomly. If a tank is within 7 squares but did not move during
the last decision, it will not make a noise and will not be picked up by this sensor. The information
returned about the closest tank is the direction to move on the shortest path toward the sensed tank.
If there is more than one possible direction, then the sensor chooses one randomly. If there is no tank
within 7 squares that moved, the sound sensor will have value silent.
^sound silent/left/right/forward/backward

You can select a tank by clicking on the tank in the Main Map Window. The sensors of the selected tank
are shown in the Current Tank’s Status window.

03/16/01 Soar Tutorial

72

1.4 Tank Secondary Sensors
In addition to the primary sensors, a tank has additional sensors that give it information about its own
state. These sensors are available via the input-link and are always functional.
• Clock

Clock is initialized to 1 and is incremented each decision. It is a global counter for all tanks and thus,
if a tank is created after others have run for a while, the initial value will not be 1.
^clock 1-N

• Direction
The direction that the tank is facing: north, east, south, or west. It changes when the tank turns.
^direction north/east/south/west

• Energy
The current energy level. If energy is 0, the tank will not be able to use its radar or shields.
^energy 0-1000

• Energy recharger
If a tank is on an energy recharger (battery), this has value yes. Otherwise it is no.
^energyrecharger no/yes

• Health
The current health level. If health is 0, the tank dies and is resurrected at a random square.
^health 0-1000

• Health recharger
If a tank is on a health recharger, this has value yes. Otherwise it is no.
^healthrecharger no/yes

• Missiles
The number of missiles the tank currently has.
^missiles 0-N

• My-color
The color of the tank.
^my-color blue/red/purple/…

• Radar-distance
The effective distance of the radar the last time it was used. This is the distance that the radar
reached before it was blocked. If there were no obstacles, it will be the same as the radar-setting.
^radar-distances 1-14

• Radar-setting
Radar-setting is the distance that the radar has been set to using the radar-power output command.
^radar-setting 1-14

• Radar-status
Radar-status tells whether the radar is turned on or not.
^radar-status on/off

• Random
A random real number between 0 and 1. It changes every decision.
^random 0.0-1.0

• Resurrected
Whenever a tank dies and is resurrected, this has value yes.
^resurrected no/yes

• Shield-status
Shield-status tells whether the shields are turned on or not.
^shield-status on/off

• X
X is the x location on the map. X goes from 1 (left side) to 14 (right side).
^x 1-14

• Y
Y is the y location on the map. Y goes from 1 (top) to 14 (bottom).
^y 1-14

03/16/01 Soar Tutorial

73

1.5 Tank Actions
A tank has several actions it can perform. All actions are performed by augmenting the output-link. All
actions can be performed in parallel except for move and rotate.
• Move

A tank can move forward, backward, left, or right. Moving is mutually exclusive with rotating. If a tank
tries to move but is blocked, it remains where it is and loses 100 health units.
^move.direction left/right/forward/backward

• Rotate
A tank can rotate left or right. Rotating is mutually exclusive with moving. A rotate will never fail
(assuming the tank is neither killed nor tries to simultaneously move).
^rotate.direction left/right

• Fire
A tank can fire one missile per decision. Firing can be done in conjunction with any other action. The
missile is fired straight ahead in the direction the tank is facing. Firing a missile decreases a tank's
missile supply by one, and it will fail if a tank has no missiles. This failure will be reflected by the
tank's missile supply remaining zero.
^fire.weapon missile.

• Radar
A tank can turn its radar on and off. Turning the radar on will fail if a tank does not have enough
energy to supply the radar. This failure will be reflected in that ^radar-distance will adjust itself to
the highest actually attainable level.
^radar.switch on/off

• Radar Range
A tank can change the range of its radar by using the radar-power command. The value can be from
1 to 14. The higher the power setting of the radar, the more energy is used.
^radar-power.setting 1-14

• Shields
A tank can turn its shields on and off, and this can be done in conjunction with any other action.
Turning shields on uses 20 energy units per decision. It will fail if a tank does not have enough
energy. The failure will be reflected in that ^shield-status will be off.
^shields.switch on/off

03/16/01 Soar Tutorial

74

1.6 Types of Game Objects
The following are the objects that can appear on the map:

• Obstacles

Obstacles look like trees and they are there to get in the way. They never move and they cannot
be blown up. There will not be any part of the playing field that is inaccessible purely due to wall
placement. (Part of the playing field could be temporarily inaccessible due to a tank blocking the
way.)

• Healthcharger

There is one healthcharger per map. The healthcharger never moves. For each decision a tank
stays on a healthcharger, its health is increased by 150 minus the health tax of 2 and any
damage it may incur by bumping into something.

• Energycharger

There is one energycharger (battery) per map. The energycharger never moves. For each
decision that a tank stays on an energycharger, its energy is increased by 250 units minus
whatever energy it uses for its shields and/or radar.

• Packs of missiles

Packs of missiles are scattered around in random squares. They never move of their own accord
nor can they be moved. Missiles flying through squares with packs of missiles do not hit those
packs. Packs of missiles are created at random locations and times. A tank can pick up a pack of
missiles by moving to its square. The pack of missiles disappears and the tank's missile supply is
increased by 7.

• Tanks

Tanks are controlled by TankSoar agents. They do fun stuff like fire missiles and move around,
as described above.

All objects take up only one square. Obstacles cannot exist in the same square as any other object. Both
chargers will never be in the same square. A tank cannot be in the same square as a pack of missiles
because it will pick up that pack. All other combinations of objects are allowed together in a square.

03/16/01 Soar Tutorial

75

1.7 Summary of Input-link and Output-link
^io

^input-link
^blocked

^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

^incoming
^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

^radar
^energy

^distance 0-13
^position left/center/right

^health
^distance 0-13
^position left/center/right

^missiles
^distance 0-13
^position left/center/right

^obstacle
^distance 0-13
^position left/center/right

^open
^distance 0-13
^position left/center/right

^tank
^distance 0-13
^position left/center/right

^io
^input-link

^color red/blue/purple/…
^rwaves

^backward yes/no
^forward yes/no
^left yes/no
^right yes/no

^smell
^color none/red/blue/purple/…
^distance none/0-28

^sound silent/left/right/
forward/backward

^clock 1-N
^direction north/east/south/west
^energy 0-1000
^energyrecharger no/yes
^health 0-1000
^healthrecharger no/yes
^missiles 0-N
^my-color blue/red/purple/…
^radar-distances 1-14
^radar-setting 1-14
^radar-status on/off
^random 0.0-1.0
^resurrected no/yes.
^shield-status on/off
^x 1-14
^y 1-14

^io
^output-link

^move.direction left/right/forward/backward
^rotate.direction left/right
^fire.weapon missile
^radar.switch on/off
^radar-power.setting 1-14
^shields.switch on/off

03/16/01 Soar Tutorial

76

1.8 Tank Combat
A tank destroys another tank by hitting it with missiles. A missile can damage any tank it hits, even the
tank that fired it (in the rare case a tank is killed and recreated in the path of its own missile). Missiles fly
at about 1.3 times as fast as tanks move. A tank that is hit by a missile while its shields are down has its
health decreased by 400 units. If a tank is hit while its shields are up, the tank will not lose any health but
will lose 250 energy units. If a tank is sitting on a healthcharger or an energycharger when a missile hits
it, the tank dies instantly, no matter what its health level or shield status. This is to discourage camping
out on the chargers during a battle. When a tank is killed, it is resurrected at a random, unoccupied
square on the next decision.

The scoring of a games is as follows: a tank gets two points for each of its missiles that hits another tank
while its shields are down and three points for every tank it kills. A tank loses one point for each missile
that hits it while its shields are down, and two points each time it is killed. This is to encourage
aggressive, but not fanatical tactics. Tanks have an unlimited number of lives. The game ends when one
of the tanks gets 50 points.

03/16/01 Soar Tutorial

77

1.9 TankSoar Scheduler
In Eaters, a new operator was selected on every decision, and every operator performed an external
action, either a move or a jump. In TankSoar, some of the decisions will not result in new operators being
selected and some operators will perform only internal actions. If we continue to use the scheduling
approach in Eaters in TankSoar, where each tank would get only one decision before the simulation world
is updated, tanks that are not performing external actions will appear to just sit in place. This can be quite
a disadvantage if a tank is under attack. To avoid penalizing tanks that are “thinking” a bit, TankSoar
provides an alternative scheduler. With this scheduler, every tank is run until it generates output
commands. Usually this will be a single decision, but sometimes will be many decisions. To handle cases
where a tank does not attempt to perform an external action given the current situation, the tank will be
run a maximum of fifteen decisions. You can use the alternative scheduler by clicking on the Tanks item
on the Control Panel menu, which will give you a pulldown.

In the pulldown menu, click on “Run til Output Generated”.

From this point on, each of your tanks will each run until it has produced new output on the output-link
before another tank will run (but the simulator will not run and change the inputs for other tanks until all
tanks have run). Below is a graphic depiction of how everything works under this approach with three
tanks.

The Interface Window in TankSoar has additional buttons on the bottom. In Eaters, the Interface Window
had the Step, Run, Stop, and Search buttons at the bottom. In TankSoar, these have been augmented
with buttons to run the agent a single phase (one wave of rule firing), a single elaboration (multiple waves
of rule firing in proposal or application), or one decision independent of the other tanks and the simulation

Tank1
output

Tank2
output

Tank3
output

Simulator:
Perform actions
for all tanks and

update all
entities.More rule

firings
More rule

firings
More rule

firings

03/16/01 Soar Tutorial

78

environment. This can be useful when you want to debug a tank while using the Run Til Output
Generated scheduler because it allows you to step through the processing of your tank. Otherwise, your
tank will possibly select and apply multiple operators before output is generated.

03/16/01 Soar Tutorial

79

2. Simple Wandering Tank

In this section, you will create a tank that wanders around the board looking for objects. This will help you
to get familiar with the TankSoar software. This tank will be the basis for a more complex tank you will
build later.

Wandering consists of moving around the map, using sensors to avoid bumping into obstacles and to
detect other objects. A tank’s main sensor for seeing other objects is its radar, which works from the front
of the tank. Therefore, even though a tank can move in all four directions, it is best to move forward and
turn to avoid obstacles. The radar uses up energy, so it is best to use it sparingly. The simplest thing to
do is to turn on the radar when the tank turns, and turn it off if there is nothing interesting to see (such as
tanks, missiles, the energy recharger, or the health recharger). One interesting issue is how much power
should be used with the radar. To simplify things, you can always turn it on to 13, the maximum distance
it can see. You will get a chance to improve your tank later, but for now it is best if it is simple.

This analysis leads to the three operators and the search control described below:
• Move: move forward if not blocked.
• Turn: if front is blocked, rotate and turn on the radar with power 13.
• Radar-off: if the radar is on and there are no objects visible, turn off the radar.
• If radar-off is proposed, then prefer it to move.
This set of knowledge for wandering is just the start of a more complex tank, and you will have to add
attacking other tanks, picking up missiles, and recharging later.

The rest of this section goes through the creation of these operator and search control, step by step. If
you feel confident that you can write these three operators and associated search control by yourself, go
ahead and do it. All of the rules necessary to write the tanks in the tutorial are in the folder/directory
named Tutorial.

Throughout the development of operators for TankSoar, you should include the general rules that were
created in section 10.3 of the Eaters part. These are the rules that created the action commands on the
output-link and removed the action commands when they were complete. If you use these rules, many of
the operators will have only proposals.

To get started, create a new agent in Visual-Soar based on the default agent provided in the release.
Copy into the agent the general rules you created for the Eaters.

03/16/01 Soar Tutorial

80

2.1 Move Operator
This operator is very similar to the move operator in Eaters, except that the sensors for detecting open
spaces in front of the tank are in a different structure than the one in Eaters.

To write the move operator, you should first write comments for operator proposal. The application of this
operator is handled by the general rules from Eaters section 10.4. You should type these comments into
your file as documentation.

Below is one possible version:

Move Operator Proposal
If the tank is not blocked in the forward direction, propose the move
operator.

In writing the Soar version of the operator proposal, you can reuse parts of the rules you wrote in Eaters.
One part of those operators that was a bit tricky was the termination of the operator. In Eaters, we had to
make sure that the proposal would retract after the operator applied. For Eaters that tested the cells
surrounding them, no additional conditions were required because the contents of these cells changed on
every move. The same holds true in TankSoar. Whenever the tank moves, the working memory elements
that are the attributes of the blocked sensor change, even if the value is exactly the same. Thus, the
proposal will retract and rematch each time a tank moves.

After writing the proposal rule, you can test it, together with the general rules, by creating a tank with just
those rules. The tank should move forward until it is blocked.

sp {propose*move
(state <s> ^io.input-link.blocked.forward no)

-->
(<s> ^operator <o> +)
(<o> ^name move

^actions.move.direction forward)}

03/16/01 Soar Tutorial

81

2.2 Turn Operator
The original definition of the turn operator was:
• If the front is blocked, rotate and turn on the radar to power 13.

Which direction should the tank turn? A reasonable approach is to turn left or right only if that direction is
not blocked. If both directions are blocked, the tank can turn in either direction. Once the tank has turned,
it will detect that it should turn again, so that the tank would turn completely around. Try to write the
comments for the proposals. The turn operators should be indifferent because it is possible to have both
a left and right turn proposed at the same time, and it doesn’t matter which direction the tank turns.

Turn Operator Proposal
If the tank is blocked in the forward direction, and not blocked in the
right or left directions, then propose the turn operator for the unblocked
direction. Also create an indifferent preference for the operator.
This operator will also turn on the radar and set the radar-power to 13.
If the tank is blocked in the forward direction, and in both the right or
left directions, then propose the turn operator left.

After the comments are written, try to write the Soar rules. Once they are written and debugged, your tank
should wander around the map indefinitely, although it will never turn off its radar and will quickly run out
of energy.

Below are possible rules for proposing the turns.
sp {propose*turn

(state <s> ^io.input-link.blocked)
(^forward yes

^ { << left right >> <direction> } no)
-->

(<s> ^operator <o> + =)
(<o> ^name turn

^actions <a>)
(<a> ^rotate.direction <direction>

^radar.switch on
^radar-power.setting 13)}

The propose*turn rule uses a variable (<direction>) to match a blocked direction with value no, meaning
that there is not an object in the square. That attribute is restricted to match only left and right because
those are the only two directions a tank can rotate. The actions of the rule are more complex than other
rules you’ve written. The action of this rule creates three different action commands that will be copied in
parallel to the output-link by apply*operator*create-action-command. As a result, the tank rotates, turns
on its radar, and sets the radar-power all at the same time.

Propose*turn handles the cases where there is an open square to the left or right. The following rule
handles the case when the three forward directions are blocked. I arbitrarily decided to have the tank turn
left to start turning around. After it rotates left once, the propose*turn rule will match and propose a further
turn to the left.

sp {propose*turn*backward
(state <s> ^io.input-link.blocked)
(^forward yes ^left yes ^right yes)

-->
(<s> ^operator <o> +)
(<o> ^name turn

^actions.rotate.direction left)}

{}, and << >> can be
used for attributes

All of these actions will be
copied to the output-link.

03/16/01 Soar Tutorial

82

2.3 Radar-off Operator
In addition to moving and turning, your tank needs to turn off its radar to conserve energy. You should
write a proposal for radar-off, and some search control so that radar-off is preferred to move.

• Radar-off: if the radar is on and there are no interesting objects visible, turn off the radar. The radar is
left on for energy, health, missiles, so that the tank can either pick up the object. It is left on for tanks
so they can be attacked.

• If radar-off is proposed, then prefer it to move and turn.

The English versions of the rules for this operator are straightforward:
Radar-off Operator Proposal
If the radar is on but no energy, health, missiles and tanks visible,
then propose the radar-off operator

Radar-off Search Control
If radar-off is proposed, then prefer it to move and turn.

The only tricky part of this operator is that there must be a condition in the proposal that tests that there
are not any objects on radar. Remember that the radar’s input structures are attributes of the radar
augmentation. For every object on radar, there is an augmentation of the radar object, where the value of
the attribute is the type of object: energy, health, missiles, obstacle, open, and tank. For example, if there
is a tank on radar, the following condition could match it: (<s> ^io.input-link.radar.tank). You need to write
a single condition that detects if radar does not detect a tank, missiles, energy, or health. You need to
include a test that the radar is on (otherwise, your rule will turn the radar off when it is already off).
Try writing these rules on your own before looking at the ones below.

sp {propose*radar-off
(state <s> ^io.input-link <il>)
(<il> ^radar-status on

-^radar.<< energy health missiles tank >>)
-->

(<s> ^operator <o> +)
(<o> ^name radar-off

^actions.radar.switch off)}

sp {select*radar-off*move
(state <s> ^operator <o1> +

^operator <o2> +)
(<o1> ^name radar-off)
(<o2> ^name << turn move >>)

-->
(<s> ^operator <o1> > <o2>)}

A different approach is to turn off the radar as part of the move operator. Turning the radar off can happen
in parallel with moving and turning. It is implemented as an additional action of those operators.

sp {apply*move*radar-off
(state <s> ^operator <o>

^io.input-link <il>)
(<il> ^radar-status on

-^radar.<< energy health missiles tank >>)
(<o> ^name << turn move >>

^actions <a>)
-->

(<a> ^radar.switch off)}
This rule is included in the all folder/directory instead of the operator rules because it will fire in parallel
with other actions.

Tests that there are no radar
contacts of these types.

Prefers radar-off to move

Tests that the radar is on.

03/16/01 Soar Tutorial

83

2.4 Wander Trace

If you create a tank with your wander rules and the radar-off operator and run it, the trace will look
something like this.

Usually turn is followed by radar-off, but whenever there is an object on radar, the radar will not be turned
off until after the tank has passed that object.

03/16/01 Soar Tutorial

84

3. Wander Operator - Subgoals

The rules you wrote for the previous section could be extended and rules for chasing and attacking
enemy tanks, recharging, and picking up missiles could be added to make a more complete tank.
However, you would either have to add many more search control rules to keep the wandering rules from
firing during these other activities, or you’d have to modify the operator proposals. Both approaches are
not very appealing. It would be better if you could package the wander rules and operators into a unit that
can be used when the tank should wander. An alternative but related problem is that there are high-level
activities that a tank can perform involving complex combinations of low-level actions. One such set of
high-level activities consists of wandering, chasing, attacking, and retreating. Although these are high-
level activities, a tank should be able to use its knowledge to select between these activities based on the
current situation, just as it selects between different operators. Both of these problems are handled in
Soar by allowing abstract high-level operators to be implemented in subgoals where a new state is
created that allows low-level operators to be selected in pursuit of the high-level operators.

The hierarchy of operators you will build looks like the following:

In addition to this hierarchical structure, there will be additional rules for turning the shields on and off,
and remembering sounds. These rules are independent of the hierarchy – they will be proposed and
applied in any active goal.

This section introduces subgoals by tracing through the proposal, selection, and application of the high-
level operator for wander. In later sections, you will add other high-level operators for chase, attack, and
retreat.

Visual-Soar makes this easy to do. It allows you to create the abstract operators, such as wander and
chase, and then create suboperators that are embedded within the abstract operators. See the
documentation for Visual-Soar for details.

The tank you will create will not be the best or smartest tank, but building it will teach you many new
things about Soar.

Wander Chase RetreatAttack

Move Turn Fire MoveSlideMove WaitTurn TurnMove

03/16/01 Soar Tutorial

85

3.1 Wander Operator Proposal

If you think of wandering as an operator, then in Soar it consists of rules to propose it and then apply it.
When should a tank wander? When it is not attacking, chasing, or under attack by another tank. Thus,
wandering is an activity to be performed when no other tanks are detected, or at least threatening. A tank
has many senses by which it can detect other tanks.
• Blocked: does not tell if an obstacle is a tank, so it not useful for deciding to wander.
• Incoming: indicates that a missile is approaching the tank.
• Radar: detects exactly where another tank is. However it is limited to seeing in front of the tank and

can be blocked by obstacles.
• Rwaves: indicates that another tank can detect the tank from a given direction.
• Smell: detects the closest tank, but that tank may be on the other side of a wall.
• Sound: gives the direction to another tank that is close (seven square or less); however it does not

work if the other tank has stopped moving.
Although rwaves is a very useful sensor in this case, in order to keep the examples simple it is not
included. You will want to add it to your tank later on. The other sensors for detecting a nearby tank are
incoming, radar, and sound.

##Wander Operator Proposal
If there is no tank detected on radar, and the sound is silent, and there
is no incoming, then propose the wander operator.
Translating this into Soar is a bit tricky because there are two tests for negations (no tank on radar, no
incoming), but you should give it a try.

sp {propose*wander
(state <s> ^io.input-link <io>)
(<io> ^sound silent

-^radar.tank
-^incoming.<dir> yes)

-->
(<s> ^operator <o> +)
(<o> ^name wander)}

Although this rule has everything listed in the comments, it needs to be modified because your tank is
going to have a hierarchy of states. The other states are going to be created as part of subgoals of the
state you’ve been using in all of your eaters and tanks. You do not want the wander operator to be
proposed in those states, you want it to be proposed only in the “top” state. The top state is distinguished
because there is no state that is its superstate, which is indicated by the augmentation, ^superstate nil.
Although using the superstate augmentation will work perfectly well for this program, it will not work if you
want to embed this complete set of operators inside of another task. One useful convention is to name
the state with the current task, in this case it might be “tanksoar.” You can then write a rule that
augments the top state with the name.

sp {elaborate*task*tanksoar
(state <s> ^superstate nil)
-->
(<s> ^name tanksoar)}

sp {propose*wander
(state <s> ^name tanksoar

^io.input-link <io>)
(<io> ^sound silent

-^radar.tank
-^incoming.<dir> yes)

-->
(<s> ^operator <o> +)
(<o> ^name wander)}

03/16/01 Soar Tutorial

86

3.2 Impasses and State Creation
All of the previous operators you’ve written have had rules to apply them. However, wandering is not an
activity that is easily represented by individual rules – it is better represented as the repeated selection
and application of the operators you wrote in Section 2. How does Soar make it possible to use operators,
such as move and turn, to apply a higher level operator such as wander? To find out, create a tank with
only your wander operator proposal rule. Run it for two steps.

What happens is that Soar detects that there are no rules that match and are ready to fire when the
wander operator is selected, which means that Soar cannot make progress. In Soar, this is called an
operator no-change impasse, because an operator has been selected and there is no new decision to be
made. There are three other types of impasses in Soar.
• A state no-change impasse is when no operators are proposed for the current state.
• An operator tie impasse is when there are multiple operators proposed, but insufficient preferences to

select between them.
• An operator conflict impasse is when there are multiple operators proposed, and the preferences

conflict.

Whenever an impasse arises, Soar automatically creates a new state (S3 in the trace above). The
purpose of this state is to provide a context for selecting and applying operators to resolve the impasse.
Operator no-change impasses are resolved when the current operator is no longer preferred in the
original state (S1 in the trace above). That can be because either the proposal for the current operator is
retracted (the rule creating the proposal no longer matches), or because of the set of operator
preferences changes so that another operator is preferred. Operators are selected and applied in the
substate via rule firings. These operators can change the local state, but they can also change the
contents of original state (S1) by modifying the original state directly or by performing external actions that
indirectly lead to changes in sensors. An impasse can arise in the substate, which then leads to a stack of
states. In the trace above, no operator is proposed in state S3, so another substate, S4, is created.

To see all of the selected operators and their states, use the print-stack command. When a substate is
created, it has some initial augmentations that distinguish it from other states. Take a look at the
augmentations for state S3 above by printing S3.

The most important of these is the superstate augmentation, which has as its value the identifier of the
state in which the impasse arose (S1). You will use this augmentation to match the wander operator and
other structures, such as the input-link and output-link.

03/16/01 Soar Tutorial

87

3.3 Wander Operator Application
As mentioned in the previous section, the wander operator is applied by selecting and applying operators
in the substate. The original rules you wrote for wander need to be changed because they now need to
apply only if the wander operator is selected. Consider the original move operator:
Move Operator Proposal
If the tank is not blocked in the forward direction, propose the move
operator.

sp {propose*move
(state <s> ^io.input-link.blocked.forward no)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^actions.move.direction forward)}

This must be modified to include tests for the wander operator as the superoperator.

Wander: Move Operator Proposal
If the wander operator is selected as the superoperator, and tank is not
blocked in the forward direction, then propose the move operator.

Using what you know about the superstate augmentation that is created when wander is selected, try to
write this proposal rule.

Here is what you might have come up with:
sp {wander*propose*move

(state <s> ^superstate.operator.name wander
^io.input-link.blocked.forward no)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^actions.move.direction forward)}
Unfortunately, this rule will not match because there is no ^io augmentation of the substate. Further, the
missing io means that the general rules you wrote to perform the action of this operator by creating and
removing the move action command on the output-link won’t fire. One approach would be to rewrite this
rule so that instead of testing ^io.input-link… it tested ^superstate.io.input-link… However, that doesn’t
solve the other problem and if there were a deeper hierarchy, you would have to know exactly how many
levels of superstates there were. An alternative is to copy the io augmentation down to the state. A
simple, general rule can do this and solve both problems.

sp {elaborate*state*io
(state <s> ^superstate.io <io>)

-->
(<s> ^io <io>)}

This rule will copy the io pointer to each new state as it is created. You should add this rule to your set of
general rules.

With this rule, the only change that has to be made to your operator proposals is to add a test for:
^superstate.operator.name wander. This tests that the selected superoperator is wander. It will
not match against any other proposed operators because they will have only acceptable preferences (+).
An alternative approach, which simplifies these operator proposals, and is consistent with the convention
adopted earlier for naming the top state, is to create a rule that copies the name of the superoperator to
the state, so that your rules can directly test the name on the state:

sp {elaborate*state*operator*name
(state <s> ^superstate.operator.name <name>)

-->
(<s> ^name <name>)}

If this rule is used, all that has to be added to each of the operator proposal rules is ^name wander.

03/16/01 Soar Tutorial

88

3.4 Wander Application
Based on the analysis of the previous section, you can now rewrite the proposal rules for the operators
that apply as part of the wander operator. In order to keep better track of your rules, you should also
adopt the convention of including the name of the state (wander) at the beginning of the name of the
rules.

sp {wander*propose*move
(state <s> ^name wander

^io.input-link.blocked.forward no)
-->

(<s> ^operator <o> + =)
(<o> ^name move

^actions.move.direction forward)}

sp {wander*propose*turn
(state <s> ^name wander

^io.input-link.blocked)
(^forward yes

^ { << left right >> <dir> } no)
-->

(<s> ^operator <o> + =)
(<o> ^name turn

^actions <a>)
(<a> ^rotate.direction <dir>

^radar.switch on
^radar-power.setting 13)}

sp {wander*propose*turn*backward
(state <s> ^name wander

^io.input-link.blocked)
(^forward yes

^left yes
^right yes)

-->
(<s> ^operator <o> +)
(<o> ^name turn

^actions.rotate.direction left)}

03/16/01 Soar Tutorial

89

3.5 General Rule Summary
Using the rules you’ve written in this section so far, together with the general rules, your tank should
wander around until it encounters another tank. Below is the complete set of general rules you should
have in your tank. The appropriate place to put them is in the elaborations folder/directory.

sp {apply*operator*create-action-command
(state <s> ^operator <o>

^io.output-link)
(<o> ^actions <act>)
(<act> ^<att> <value>)
(<value> ^<att2> <value2>)

-->
(^<att> <value3>)
(<value3> ^<att2> <value2>)}

sp {apply*operator*remove-command
(state <s> ^operator.actions

^io.output-link)
(^<att> <value>)
(<value> ^status complete)

-->
(^<att> <value> -)}

sp {elaborate*state*io
(state <s> ^superstate.io <io>)

-->
(<s> ^io <io>)}

sp {elaborate*state*operator*name
(state <s> ^superstate.operator.name <name>)

-->
(<s> ^name <name>)}

The trace of your tank should look something like the following, where wander is selected, and then the
move, turn, and radar off operators are selected for the substate.

Tests the existence of the augmentation
but does not test any specific value.

03/16/01 Soar Tutorial

90

4. Chase, Attack, and Retreat

Remember that the hierarchy of operators that you build will look like the following:

In this section you will write the rules for Chase, Attack, and Retreat. By now you should know Soar well
enough to try to write these on your own. However, some tricky issues will come up and the rest of this
section will lead you through writing them step-by-step. Even if you do write the operators yourself, you
will find it valuable to go through the tutorial sections because they introduce a few new ideas in how to
write Soar programs.

Wander Chase RetreatAttack

Move Turn Fire MoveSlideMove WaitTurn TurnMove

03/16/01 Soar Tutorial

91

4.1 Chase Operator Proposal
The chase operator should be selected when a tank senses that another tank is close, but it doesn’t know
exactly where the other tank is. As discussed earlier, the sound sensor gives a good indication of whether
another tank is close (if the other tank is moving), but it is not sufficient for attacking the other tank. If a
tank has another tank on radar, it can attack and need not chase. However, if the tank has no missiles, or
is very low on energy (so it cannot use shields or radar), it should not chase another tank. Finally, the
chase operator should only be proposed for the top state. If you put all of these together, you will come up
with the conditions for proposing the chase operator.

##Propose Chase Operator
If the state is the top state, and sound sensor is not silent, and there
is no tank on radar, and energy or missiles is not low, then propose the
chase operator.

To write a Soar rule that tests these conditions requires coming up with a definition of low health and low
missiles. You could just pick a number, such as 100, and test that the energy is not below that number,
but you will have to remember that number when you write other operators, such as retreat, that handle
the cases when the energy is below that number. You will also include two conditions, one to test energy
and one to test missiles in every rule. A more general approach is to create rules that test for either the
energy levels being low or no missiles, and create a structure in working memory that can be tested in the
future.

Rules for generating these classifications should be restricted to firing only in the top state. Otherwise,
these rules will fire every time a new state is created, because the ^io attribute is copied to all states. It is
easy to restrict this to firing only in the top state by adding the condition: ^name tanksoar.

sp {elaborate*state*missiles*low
(state <s> ^name tanksoar

^io.input-link.missiles 0)
-->
(<s> ^missiles-energy low)}

sp {elaborate*state*energy*low
(state <s> ^name tanksoar

^io.input-link.energy <= 200)
-->
(<s> ^missiles-energy low)}

These rules have exactly the same action – the same identifier, attribute, and value. What happens when
both rules fire at the same time? Soar never allows duplicate working memory elements, so although both
rules fire, only one working memory element is created.

The chase proposal then is:
 sp {propose*chase

(state <s> ^name tanksoar
^io.input-link <io>

-^missiles-energy low)
(<io> ^sound <> silent

-^radar.tank)
-->
(<s> ^operator <o> +)
(<o> ^name chase)}

Both rules have the
same action

Test that sound is
detected

03/16/01 Soar Tutorial

92

4.2 Chase Operator Application
The chase operator is applied through the selection of the move and turn operators. Both operators test
the direction of the sound, which can be accessed directly from the input-link, or to simplify the rules, you
can add an elaboration rule that copies the sound to the local state. For example, you can add the rule:

sp {chase*elaborate*state*sound-direction
(state <s> ^name chase

^io.input-link.sound <sound>)
-->
(<s> ^sound-direction <sound>)}

One advantage of this approach is that if you later change the way in which the sound direction is
computed, only this rule needs to be modified, and not the ones that test sound-direction. This is exactly
what is going to happen later when we add operators to remember sounds in Section 5.2.

Since the goal of the chase operator is to get a radar contact with the enemy tank, the radar should be
turned on if it is off, which can be done in parallel with the other operators. The following rule elaborates a
selected operator with commands to turn on the radar if it is off.

sp {chase*elaborate*radar
(state <s> ^name chase

^operator.actions <a>
^io.input-link.radar-status off)

-->
(<a> ^radar.switch on

^radar-power.setting 13)}

Propose Move Operator
If the state is named chase and the sound is coming from the forward position, propose move forward.

sp {chase*propose*move
(state <s> ^name chase

^sound-direction forward
^io.input-link.blocked.forward no)

-->
(<s> ^operator <o> +)
(<o> ^name move

^actions.move.direction forward)}

Propose Turn Operator
If the state is named chase and the sound is coming from left or right, turn that direction.

sp {chase*propose*turn
(state <s> ^name chase

^sound-direction {<< left right >> <direction>})
-->
(<s> ^operator <o> +)
(<o> ^name turn

^actions.rotate.direction <direction>)}

Propose Turn Operator Backward
If the state is named chase and the sound is coming from backward, turn left.

sp {chase*propose*backward
(state <s> ^name chase

^sound-direction backward)
-->
(<s> ^operator <o> +)
(<o> ^name turn

^actions.rotate.direction left)}

03/16/01 Soar Tutorial

93

4.3 Attack Operator Proposal
The purpose of the attack operator is to shoot missiles and hit the other tank. Thus, the attack operator
should be selected when a tank can see another tank on radar. However, if a tank is low on health or
energy, it may be better to retreat instead of attack. As with chase, the attack operator should only be
proposed for the top state. If you put all of these together, you will come up with the conditions for
proposing the attack operator.

##Propose Attack Operator
If the state is the top state, and there is a tank on radar, and health and energy are not low, then
propose the attack operator.

The above proposal can be written as a single rule. There should be an indifferent preference for the
operator because there can be more than one tank on the radar and thus, more than one operator
instantiation.

 sp {propose*attack
(state <s> ^name tanksoar

^io.input-link.radar.tank
-^missiles-energy low)

-->
(<s> ^operator <o> + =)
(<o> ^name attack)}

03/16/01 Soar Tutorial

94

4.4 Attack Operator Application
The attack operator is applied through the selection of the move, turn, and fire operators.
• If an enemy is on radar in the center, the tank can just fire a missile.
• If an enemy is off center and in front, the tank should move to the left or right to get an open shot.
• If it can’t slide because it is blocked, the tank should move forward.
• If the enemy is right next to the tank, it should turn.
If you want your tank to be aggressive, it could move and shoot in one operator.

##Propose Fire-missile Operator
If the state is attack and there is a tank on radar in the center, then propose the fire missile operator.

sp {attack*propose*fire-missile
(state <s> ^name attack

^io.input-link <il>)
(<il> ^radar.tank.position center

^missiles > 0)
-->
(<s> ^operator <o> + >)
(<o> ^name fire-missile

^actions.fire.weapon missile)}

The number of missiles is tested so that the action will be attempted only if there are missiles available.
This operator needs a best preference so that is preferred to the following operators.

##Propose Slide Operator
If the state is attack and there is a tank on radar that is not in the center, and there is not a tank in the
center, and there is an open spot in the direction of the tank, then propose the slide operator in the
direction of the tank.

sp {attack*propose*slide
(state <s> ^name attack

^io.input-link <input>)
(<input> ^blocked.<dir> no

^radar <r>)
(<r> ^tank.position { << left right >> <dir> }

-^tank.position center)
-->
(<s> ^operator <o> + =)
(<o> ^name slide

^actions.move.direction <dir>)}

This operator must be indifferent in case there is more than one tank on radar.

The number of missiles is
tested so that the rule will
fire more than once.

03/16/01 Soar Tutorial

95

##Propose Move-Forward Operator
If the state is attack and there is a tank on radar that is not in the center, and there is not a tank in the
center, and the tank is blocked in that direction then propose move-forward.

sp {attack*propose*move-forward
(state <s> ^name attack

^io.input-link <input>)
(<input> ^blocked.<dir> yes

^radar <r>)
(<r> ^tank <t>

-^tank.position center)
(<t> ^position { << left right >> <dir> }

^distance <> 0)
-->
(<s> ^operator <o> + =)
(<o> ^name move-forward

^actions.move.direction forward)}

The final condition tests that the opposing tank is not at distance 0, which would be true if the opposing
tank were immediately next to the tank under control. In that case, the tank should turn and fire on the
enemy tank. That operator is proposed in the next rule.

###Propose Turn Operator
If the state is attack and there is a tank on radar that right next to the tank, then propose turning in that
direction and firing.

sp {attack*propose*turn
(state <s> ^name attack

^io.input-link.radar.tank <tank>)
(<tank> ^distance 0

^position { << left right >> <dir> })
-->
(<s> ^operator <o> + =)
(<o> ^name turn

^actions <a>)
(<a> ^rotate.direction <dir>

^fire.weapon missile)}
This rule has two actions: rotating and firing a missile. In TankSoar, both actions will happen during the
same decision, but the rotate will occur first, followed by firing the missile. This has nothing to do with the
order of the actions, but is a feature of TankSoar.

03/16/01 Soar Tutorial

96

4.5 Retreat Operator Proposal
The purpose of the retreat operator is to get the tank out of harm’s way when it is low on missiles or
energy. Thus, the retreat operator should be selected when a tank has low missiles or energy and it
senses that there is another tank near. As discussed earlier, the sound and radar indicates if another tank
is close, while the incoming sensor tells if the tank is under attack. Another situation in which the tank can
retreat is when it is under attack, but does not detect the enemy tank so that it can attack or chase it. As
with chase, the retreat operator should only be proposed for the top state. If you put all of these together,
you will come up with these conditions for proposing the retreat operator.

##Propose Retreat Operator
If the state is tanksoar and the sound sensor is not silent or there is a tank on radar or there is an
incoming missile, and health is low or the energy is low, then propose the retreat operator.

The above proposal cannot easily be written as a single rule, but can be written as three rules. Since
more than one of these conditions can be true at a given time, these proposals should be indifferent.

 sp {propose*retreat*sound
(state <s> ^name tanksoar

^missiles-energy low
^io.input-link.sound {<direction> <> silent})

-->
(<s> ^operator <o> + =)
(<o> ^name retreat)}

sp {propose*retreat*radar
(state <s> ^name tanksoar

^missiles-energy low
^io.input-link.radar.tank)

-->
(<s> ^operator <o> + =)
(<o> ^name retreat)}

sp {propose*retreat*incoming
(state <s> ^name tanksoar

^missiles-energy low
^io.input-link.incoming.<dir> yes)

-->
(<s> ^operator <o> + =)
(<o> ^name retreat)}

##Propose Retreat Operator
If the state is tanksoar and the tank is under attack but cannot not directly sense the other tank, then
propose the retreat operator.

sp {propose*retreat*incoming*not-sensed
(state <s> ^name tanksoar

^io.input-link <io>)
(<io> ^incoming.<dir> yes

-^radar.tank
^sound silent)

-->
(<s> ^operator <o> + =)
(<o> ^name retreat)}

03/16/01 Soar Tutorial

97

4.6 Retreat Operator Application: State Elaboration

In applying the retreat operator, the direction of the enemy is important in deciding which way to move.
That is, the tank should attempt to move out of the line of possible fire from another tank (side-step), or if
that cannot be done, move away until a sidestep action is possible. It is easy to determine the direction
for sound, but is subtle for radar. In radar, the general direction of the enemy is forward, but if the enemy
is off center, the tank should not move in that direction, because that is probably right in the line of fire. In
addition, there might be multiple tanks around, some detected via sound, some via radar, so that multiple
directions need to be avoided. To handle this, you can add rules that elaborate the substate that has
been created with the directions that enemies are detected, and directions that should be avoided (if an
enemy is off center on radar).

In this case the following operator elaborations would be useful.
Retreat Operator Elaboration
If there is a retreat state and there is a sound coming in a given direction, record that direction.
If there is a retreat state and there is radar contact with a tank, record forward direction.
If there is a retreat state and there is an incoming, record the direction.
If there is a retreat state and there is radar contact with a tank that is not in the center, record
that direction as a direction to avoid moving.

sp {elaborate*retreat*sound*direction
(state <s> ^name retreat

^io.input-link.sound { <> silent <direction> })
-->
(<s> ^direction <direction>)}

sp {elaborate*retreat*radar*front
(state <s> ^name retreat

^io.input-link.radar.tank)
-->
(<s> ^direction forward)}

sp {elaborate*retreat*incoming*direction
(state <s> ^name retreat

^io.input-link.incoming.<dir> yes)
-->
(<s> ^direction <dir>)}

sp {elaborate*retreat*radar*direction
(state <s> ^name retreat

^io.input-link.radar.tank.position { <dir> <> center })
-->
(<s> ^avoid-direction <dir>)}

Many of these rules may fire at the same time, and in some cases, attempt to create exactly the same
working memory element, such as if sound is coming from the front and there is a tank on radar in the
front. As mentioned earlier, only a single copy of an identifier, attribute, and value will be added to
working memory. However, if the values will be different, such as if there is sound coming from the right
when a tank is on radar in front, all elements with different values will be added to working memory.

An important component of Soar is that if changes to working memory make these rules no longer match,
the structures they create will be removed and recomputed as new sensor information becomes
available.

03/16/01 Soar Tutorial

98

4.7 Retreat Operator Application
The retreat operator is applied through the selection of the move operators. Since the goal of the retreat
operator is to get away from another tank, the move operator is selected to be a sidestep from the
direction of any sensed tank. The direction of the sidestep should not be toward another tank, or in a
direction that was recorded to avoid. If there are no good choices available, there are a few possibilities,
but to keep things simple, just have the tank wait and be silent, and hope the other tank goes away.

Propose Move Sidestep Operator
If the state is named retreat then propose sidestep from the direction of a detected enemy, as
long as that direction is not blocked, is not the direction of another enemy or is a direction to avoid.
##
Propose Wait
If the state is named retreat then propose wait, and make a worst preference for it.

Calculating the direction for the sidestep operator is similar to some of the calculations that needed to be
performed in the Eater. As before, you can add a data structure to working memory. This data structure
has to contain each direction, and then the two directions that are adjacent to it. For example, the forward
direction would have left and right. You have a choice of creating this data structure for the top-level state
when the tank is created, or creating it each time that a retreat state is generated. It is more efficient to
generate it only once for the top state; however that means you need to access it via the ^superstate
augmentation.

sp {elaborate*sidestep-directions
(state <s> ^name tanksoar)
-->
(<s> ^side-direction <sd>)
(<sd> ^forward right left ^backward right left

^right forward backward ^left forward backward)}

The actions of this rule have multiple values for a single attribute. This can be written in a shorthand form
without repeating the attribute.

sp {retreat*propose*move
(state <s> ^name retreat

^direction <dir>
^superstate.side-direction.<dir> <ndir>

-^direction <ndir>
-^avoid-direction <ndir>
^io.input-link.blocked.<ndir> no)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^actions.move.direction <ndir>)}

A simple wait operator can be written that is only selected when no other operators are proposed by using
a worst preference. This operator has no application, but will be reselected each decision because it tests
that a wait operator has not been selected.

sp {retreat*propose*wait
(state <s> ^name retreat

-^operator.name wait)
-->
(<s> ^operator <o> + <)
(<o> ^name wait)}

Multiple values of an attribute
can be listed one after another

03/16/01 Soar Tutorial

99

4.8 Shield Control Rules
Turning on shields is the main defensive mechanism available to a tank. However, it is quite expensive in
terms of energy, so it should be used only if under attack or when the risk of attack is high. To simplify
things, you will only turn on your shields when under attack, and will turn off the shields if not under
attack. Therefore turning on the shields is a reflex action that should happen as soon as possible. It does
not have to be open to deliberate consideration, and therefore can be encoded as a rule instead of an
operator. In a later section, you will learn how to use Soar’s learning mechanism so that these can be
written as operators, but then be compiled into rules.

How should the rule for turning the shields on be written? The obvious choice is to test the incoming
sensor and directly modify the output-link; however, adding directly to the output link can cause a subtle
problem. The problem arises when tanks are used in competitive tournaments with the “Run Until Output
Generated” flag set. This flag is set in the Tank Control Window, under the Tanks menu item. When set,
each tank is run until it has generated output (with a limit of fifteen decisions). Usually a tank will run only
a single decision, but if the tank is changing between wandering and attacking, a few decisions might be
made before output is generated. However, if shields are turned on and off via actions directly to the
output-link, output will be available during the first decision. In some cases, such as changing from
wander to attack, another action could have been generated if the shield command waited until other
output was ready. The simplest way to do this is have the shield commands piggyback on other operators
that have actions. Each rule tests that the operator has an ^actions augmentation and adds its command.

sp {elaborate*shields-on
(state <s> ^operator.actions <a>

^io.input-link <il>)
(<il> ^incoming.<dir> yes

^shield-status off)
-->
(<a> ^shields.switch on)}

sp {elaborate*shields-off
(state <s> ^operator.actions <a>

^io.input-link <il>)
(<il> -^incoming.<dir> yes

^shield-status on)
-->
(<a> ^shields.switch off)}

Test that the shields are
currently turned off

Test that the shields are
currently turned on

03/16/01 Soar Tutorial

100

4.9 Wait Operator
There is one more operator that is included in the simple tank. This is the wait operator that is in the all
folder/directory, and is useful in almost every task, not just controlling toy tanks. The wait operator is
proposed whenever there is a state no-change impasse. A state no-change impasse arises when no
operators are proposed. This can happen because of a bug in your program. If there were no wait
operator, Soar would generate a cascade of state no-change impasses. The wait operator is proposed
whenever there is a state no-change.

Propose wait for a state-no-change

sp {top-state*propose*wait
(state <s> ^attribute state

^choices none
-^operator.name wait)

-->
(<s> ^operator <o> +)
(<o> ^name wait)}

The key to the wait operator is that it tests to see that a wait operator is not selected. Thus, one is
selected, the proposal no longer matches and retracts, but then will get reproposed during the next
proposal cycle. One slight problem with the wait operator is that after its selection, an operator no-change
impasse is generated (because there are no operator application rules). To make the trace a little bit
more readable, we can add a rule that just does a simple application such as the following:

sp {top-state*apply*wait*random
(state <s> ^operator <o>)
(<o> ^name wait)

-->
(<o> ^random elaboration)}

This “fools” Soar into not creating an operator no-change impasse. Interestingly enough, the rule never
fires because the wait operator is removed just before the application phase is entered.

03/16/01 Soar Tutorial

101

4.10 Review of Simple Tank
After writing your tank, it is a good idea to take a step back and do a little analysis to make sure that your
have operators to cover all of the situations your tank can get into. In this section, we will examine the
high-level operators, but you should also examine the sets of operators used to implement each of these
operators. Here is a list of all of the conditions covered by the different operator proposals

Wander: 1. sound silent, no tanks on radar, no incoming missile
Attack: 2. not missiles-energy low, tank on radar
Chase: 3. not missiles-energy low, not sound silent, no tank on radar
Retreat: 4. missiles-energy low, not sound silent
 5. missiles-energy low, tank on radar
 6. missiles-energy low, incoming missile
 7. sound silent, no tanks on radar, incoming missile

We can map these on to a decision tree that successively splits on different conditions and see if all of the
leaves of the tree are covered. This is a brute-force approach and is not practical when there are a large
number of different condition elements being tested.

The conditions include: sound, tanks on radar, incoming missiles, and missiles-energy low. Therefore we
expect to have a four-level tree with sixteen leaves. Although we have only seven rules, these may cover
all sixteen leaves because many rules don’t test all four conditions. To build the tree, I picked the
following condition ordering missile-energy, sound silent, tank on radar, and incoming missiles. Each
branch in the tree is labeled with the rules that can potentially match it. The letters in the nodes signify
which operator will be selected (a=attack, c=chase, r=retreat, w=wander). The complete tree does not
have to be generated if all of the remaining rules for a node propose the same operator and one of them
does not test any additional features. For example, (missiles-energy low, not-sound silent) is covered by
rules 4, 5, and 6, and rule 4 covers does not test any additional conditions.

not missiles-energy low
1,2,3,7

missiles-energy low
1,4,5,6,7

not sound silent
2,3

sound silent
1,2,7

no tank on radar
3

tank on radar
2

no incoming
1

incoming
7

no tank on radar
1,7

tank on radar
2

not sound silent
4,5,6

sound silent
1,5,6,7

no tank on radar
1,6,7

tank on radar
5,6

no incoming
1

incoming
6,7

C A

W R

A

R

W R

R

03/16/01 Soar Tutorial

102

4.11 Trace of a Simple Tank
When all of the rules have been put together, you will have a tank that can wander, chase, attack, and
retreat. If you have two of these fight against each other, you might get a trace like the following:
One of the things you immediately notice is that when the tank decides to chase another tank it gives up
on the next decision and goes back to wander. This is because the other tank is probably doing the same
thing and stops moving for one decision, and so the sound sensor goes to silent. However, once a tank
does see another, it fires a lot of missiles. Both of these should give you ideas for improving your tank.
The next section explores how to avoid the problem with the disappearing sound.

03/16/01 Soar Tutorial

103

5. Improving Sound Detection
The most obvious problem with your tank is that it loses track of other tanks whenever the other tanks
stop moving. To eliminate this problem, you can modify the rules in your tank so that when there is a
sound, the tank creates a persistent memory of the direction of that sound so that it can chase the other
tank, even if the other tank stops moving. Adding the persistent data structure requires adding new
operators and changing all of the rules that test for sound directly from the input-link. Because of these
extensive changes, you probably want to save you current tank and create a copy of it to modify. All of
the changes in this section are incorporated in the Tutorial/simple-sound-bot agent.

Even if you are not interested in improving your tank, you should read this section because it covers
some of the complexities in Soar that arise when creating persistent data structures in subgoals.

To create and remove the sound data structure requires at least two new operators.
• Record-sound: create the sound data structure when a new sound is heard.
• Remove-sound: remove the sound data structure if the direction of sound changes of if the recorded

sound has expired.
You can write an operator to directly update the sound data structure if it changes, instead of removing it
and adding a new one, but the approach taken here will minimize the number of rules you need to write.

The first step in adding these operators is to determine where sound is used and when it needs to be
recorded. Sound affects the selection of the wander, retreat, and chase operators, so any persistent
structure must be available on the top state. Sound needs to be recorded during wander, where it triggers
a shift to chase. Thus you should add record-sound to the wander operator. Remove-sound should be
selected if a sound changes directions or becomes out of date, no matter which top-level operator is
selected. Thus, you should create remove-sound.soar in the all folder/directory.

5.1 Record-sound Operator

Proposing the record operator must test that there is a sound on the input-link.
sp {wander*propose*record-sound

(state <s> ^name wander
^io.input-link.sound <> silent)

-->
(<s> ^operator <o> + >, =)
(<o> ^name record-sound)}

A best preference is used so that it will be immediately selected so the sound can be recorded.

The rule to apply the operator must test that record-sound is the current operator and the direction of the
sound. It should also test the current clock so that it can compute a time at which the sound “expires”,
meaning that the sound should be removed. I use 5 because it is long enough for the tank to turn around
and get its radar on to hunt for the other tank. Finally, the rule needs to match the superstate because
sound data structure is going to be added to it. Below is an initial version of the apply rule.

sp {wander*apply*record-sound
(state <s> ^operator.name record-sound

^io.input-link <il>
^superstate <ss>)

(<il> ^sound <direction>
^clock <clock>)

-->
(<ss> ^sound <sd>)
(<sd> ^direction <direction>

^expire-time (+ <clock> 5))}
One problem with this rule is that it records the direction of the sound in terms of forward, left, right, or
backward (that is what the sound sensor gives). This becomes a problem if the tank decides to turn and

03/16/01 Soar Tutorial

104

face in the direction of the sound (the tank will seem to chase its tail). A better approach is to record the
absolute direction of the sound: north, east, south, or west. You can add an elaboration rule that
computes the relative direction of the sound (forward, right, backward, left) in chase where it is needed.

To compute the absolute direction requires creating a data structure in working memory that maps
relative to absolute directions. This can be matched using the tanks current absolute direction (given on
the direction input-link structure), and the relative direction from the sound input-link structure.

sp {elaborate*directions
(state <s> ^superstate nil)
-->
(<s> ^direction-map <dm>)
(<dm> ^north <north>

^south <south>
^west <west>
^east <east>)

(<north> ^right east ^left west ^backward south ^forward north)
(<south> ^right west ^left east ^backward north ^forward south)
(<west> ^right north ^left south ^backward east ^forward west)
(<east> ^right south ^left north ^backward west ^forward east)}

The direction-map structure provides a mapping between the current absolute direction, a relative
direction, and a new absolution direction. For example, if a tank is facing north and the relative direction is
left, then ^direction-map.north.left has value west.

sp {wander*apply*record-sound
(state <s> ^operator.name record-sound

^io.input-link <il>
^superstate <ss>)

(<il> ^sound <rel-sound>
^direction <direction>
^clock <clock>)

(<ss> ^direction-map.<direction>.<rel-sound> <abs-sound>)
-->
(<ss> ^sound <sd>)
(<sd> ^absolute-direction <abs-sound>

^expire-time (+ <clock> 5))}

Although the absolute direction of the sound is recorded, when chasing a tank, the relative direction of the
sound is more useful. Since it is only needed in the implementation of chase, it only needs to be
computed there. You may remember that all of the rules that propose operators to apply chase do not
directly test the direction of the sound on the input-link. Instead, the input-link.sound was copied onto the
chase state. Thus, to use the recorded sound, all you have to do is replace the elaboration rule in
chase/elaborations.soar with one that computes the relative direction of the sound instead of copying the
sound from the input-link. The direction-map structure can be used to do this calculation, which involves
going from the current absolute direction of the tank, the absolute direction of the sound, to a relative
direction of the sound. For example, if the tank is facing north, and the sound is known to be west, you
can match: direction-map.north.<rel-sound> west, where <rel-sound> would match left.

sp {chase*elaborate*state*sound-direction
(state <s> ^name chase

^superstate <ss>)
(<ss> ^sound.absolute-direction <abs-sound>

^direction-map.<direction>.<rel-sound> <abs-sound>
^io.input-link.direction <direction>)

-->
(<s> ^sound-direction <rel-sound>)}

Absolute direction the tank is heading

Relative direction of sound

Absolute direction of sound

03/16/01 Soar Tutorial

105

5.2 Remove-sound Operator

The sound data structure will persist on the top-state until it is removed; therefore, another operator must
be created to remove it. This operator should be proposed whenever the time has expired. This could
happen in almost any substate, so it is wise to store this operator in the all directory.

Testing that the time has expired requires comparing the time stored on the sound data structure to the
current clock. The proposal is simply:

sp {all*propose*remove-sound
(state <s> ^name << wander chase retreat attack >>

^superstate.sound.expire-time <clock>
^io.input-link.clock > <clock>)

-->
(<s> ^operator <o> + =, >)
(<o> ^name remove-sound)}

One might be tempted to not even test for the name of the state in the proposal given that it can apply in
every state. However, testing the substate name indirectly influences the persistence of the result of the
substate. This is a complex explanation that starts with the action of remove-sound, which is to create a
reject preference for the sound data structure on the top-state. Although this action is part of the remove-
sound operator, it is also a result of the substate/impasse created when a high-level operator was
selected (wander, chase, retreat, or attack). When results are created, Soar computes their persistence
(o-support or i-support) based on how they contribute to problem solving at the level to which they are
returned. In Soar, this involves determining if they apply an operator at that level, which requires
determining if an operator at that level was tested in generating the result.

Soar determines which working memory elements were tested by recursively tracing back from the result,
through all of the rules that fired in the subgoal and created structures that were tested in generating the
results. The figure below shows a trace of the problem solving in the subgoal where
elaborate*state*operator*name tests (S1 ^operator O7) and (O7 ^name chase) in creating (S8 ^name
chase). Additional rules fire, testing the working memory elements, some of which exist in the superstate,
and some which exist in the substate. Finally (S1 ^sound S5 -) is generated as a result. The trace starts
with the result and proceeds backward, picking up all of the working memory elements from the
superstate that were tested along the way. These are all underlined in the figure. If additional rules fired in
the substate, but did not create results that contributed to the creation of (S1 ^sound S5 -), they would not
be included in the trace.

(S1 ^operator O7)
(O7 ^name chase)

(S8 ^name chase)

elaborate*state*operator*name

all*propose*remove-sound

(S1 ^sound S5)
(S5 ^expire-time 20)
(S1 ^io I1)
(I1 ^input-link I2)
(I2 ^clock 21)

(S8 ^operator O10)
(O10 ^name remove-sound)

(S1 ^sound S5 -)

all*apply*remove-sound

03/16/01 Soar Tutorial

106

From this trace, Soar generates a justification, which is essentially a rule that tests data structures that
were in working memory before the impasse arose, and whose action is the result. The justification does
not have any variables and includes tests for specific identifiers in working memory. (Soar’s chunking
mechanism replaces the identifiers in justifications with constants to build new rules.) In this case the
justification would be:

(S1 ^operator O7)
(O7 ^name chase)
(S1 ^sound S5)
(S5 ^expire-time 20)
(S1 ^io I1)
(I1 ^input-link I2)
(I2 ^clock 21)
-->
(S1 ^sound S5 -)

The justification is analyzed to determine if the result should get o-support or i-support. If the justification
tests the operator, as it does in this case, then the result gets o-support. If the justification does not test
the operator, the result gets i-support. If a result gets i-support, it is removed from working memory when
any of the elements tested in the conditions of the justification are removed from working memory.

Getting back to remove-sound, if the proposal for remove-sound does not test the name of the substate,
the test for the operator in the superstate would not be included, making it independent of any operator
application and the result would get i-support. However, if the proposal for remove-sound tests the name
of the substate, the result is dependent on the selection of the operator, and the result will get o-support.

This aspect of Soar is pretty complex and might have you wondering if you will be able to figure out how
to create results with the right persistence. In general, you will find that all of the results you create in
operator application substates should be o-supported, and they will as long as all of the rules that
propose operators in the substate test the name of the substate. If you ever have an operator that should
apply in a subgoal, but create an i-supported result, all you need to do is not test the name of the
substate.

03/16/01 Soar Tutorial

107

Applying remove-sound is pretty straightforward. All that needs to be done is remove the sound data
structure from the top-state, which in this case is the superstate.

sp {all*apply*remove-sound
(state <s> ^operator.name remove-sound

^superstate <ss>)
(<ss> ^sound <sd>)

-->
(<ss> ^sound <sd> -)}

With just the record-sound and remove-sound operators, your tank will now correctly maintain sound
even when another tank stops moving. To take advantage of this requires modifying the proposal
conditions for wander, retreat, and chase. For example, the original proposal for chase was:

sp {propose*chase
(state <s> ^name tanksoar

^io.input-link <io>
-^missiles-energy low)

(<io> ^sound <> silent
-^radar.tank)

-->
(<s> ^operator.name chase)}

The test for sound not being silent on the input-link is replaced for a test that the sound data structure
exists, which involves just testing that the sound attribute is on the state.

sp {propose*chase
(state <s> ^name tanksoar

^sound
-^io.input-link.radar.tank
-^missiles-energy low)

-->
(<s> ^operator.name chase)}

You may wish to refine the management of the sound data structure so that if the direction changes on
the input-link, the sound data structure is removed. This is done by adding another proposal rule for
remove-sound. This rule needs to match against the current sound direction, which is relative, and the
saved sound direction, which is absolute, so some conversion is necessary.

sp {all*propose*remove-sound*changed-direction
(state <s> ^name << wander chase retreat >>

^superstate <ss>
^io.input-link <il>)

(<ss> ^sound.absolute-direction <abs-sound>
^direction-map.<direction>.<rel-sound> <abs-sound>)

(<il> ^sound { <> silent <> <rel-sound> }
^direction <direction>)

-->
(<s> ^operator <o> + =, >)
(<o> ^name remove-sound)}

A further refinement you can make is to add an operator that updates the direction of the sound instead of
removing the sound data structure.

03/16/01 Soar Tutorial

108

6. Improving Your Tank
There are many ways you can modify your tank to improve its performance. The best way to this is to
watch its behavior very carefully and continually ask yourself, “What would I do if I were the tank?”

6.1 Possible Extensions
There are many possible extensions to your tank. Here are the ones that I’ve thought of, in increasing
order of difficulty:
1. The tank picks up missiles that it sees on radar.
2. The tank recharges at the health or energy chargers when it sees one on radar and is low on health or
energy.

3. Radar-power is set to be only as far as the border.
4. The tank uses different attack tactics based on how many missiles it has (aggressive if it has lots of
missiles, more conservative if it is low on missiles).

5. The tank uses the rwaves sensor better.
6. The tank has more sophisticated wandering.

6.1. Turns toward the length of hall before it moves into hall so it does not expose itself to possible
attack while turning.

6.2. Avoids getting stuck inside of rooms.
6.3. Takes more advantage of the structure of the maps.

7. The tank has more sophisticated attacking
7.1. Tries to draw enemy fire and then get out of the way.
7.2. Better attacking when radar isn’t on.
7.3. Better movement to attack when there are obstacles between your tank and the enemy.

8. The tank builds a map and uses it to:
8.1. Move directly to chargers when low.
8.2. Find places to hide when retreating or attacking.
8.3. Turn on radar so that it will reach only as far as any blocking obstacle.

You will find that a tank that fights well and can keep moving even when it runs out of energy will do much
better than a complex tank that does mapping and has other tactics but sometimes “goes dumb” (starts
to thrash between operators or gets a tie between operators).

6.2 Final Thoughts
There are some other important aspects of substates in Soar not covered in this tutorial, and you should
study the Soar 8 manual to learn about them. For example, Soar automatically terminates a substate if
there are o-supported structures in the substate whose basis for creation in the superstate changes. Also,
Soar has a learning mechanism, called chunking, that can be used to automatically learn new rules.

Some general advice to keep you out of trouble is:
• Never combine different problem solving functions in a single rule. For example, do not create a rule

that both applies one operator and simultaneously proposes another operator.
• Don’t propose two operators in a single rule.
• Don’t combine operators that create internal persistent structures. This isn’t as important as the other

two; however, by keeping each operator separate, it will be much easier to debug your code.

	Part II: Subgoals
	TankSoar
	
	1.1 Installing and Playing TankSoar
	1.2 Tank Resources
	1.3 Tank Primary Sensors
	1.4 Tank Secondary Sensors
	1.5 Tank Actions
	1.6 Types of Game Objects
	1.7 Summary of Input-link and Output-link
	Tank Combat
	TankSoar Scheduler

	2. Simple Wandering Tank
	
	2.1 Move Operator
	2.2 Turn Operator
	2.3 Radar-off Operator
	2.4 Wander Trace

	Wander Operator - Subgoals
	
	3.2 Impasses and State Creation
	3.3 Wander Operator Application
	3.4 Wander Application
	3.5 General Rule Summary

	Chase, Attack, and Retreat
	
	4.1 Chase Operator Proposal
	4.2 Chase Operator Application
	4.3 Attack Operator Proposal
	4.4 Attack Operator Application
	4.5 Retreat Operator Proposal
	4.6 Retreat Operator Application: State Elaboration
	4.7 Retreat Operator Application
	4.8 Shield Control Rules
	4.9 Wait Operator
	4.10 Review of Simple Tank
	4.11 Trace of a Simple Tank

	5. Improving Sound Detection
	
	5.1 Record-sound Operator
	5.2 Remove-sound Operator

	6. Improving Your Tank
	
	6.1 Possible Extensions
	6.2 Final Thoughts

