Game Playing for Artifical Intelligence (CIS 479)

· Babbage wanted to create a program to solve a chess game

· Good Domain

(1) Provided a structured task with clear success

(2) Games did not require much knowledge

· Chess average branch is 35100th
Generate & Test

(1) improve generator (generator only generates the best move)

(2) improve tester (so bad moves are known immediately)

· How do you know what move leads to win/lose? (This is a problem)

Generators

(1) complete

(2) non-redundant

(3) informed

Ply Notions

Depth + 1

[image: image1.wmf]
1 move

[image: image2.png][image: image3.png][image: image4.png]
2 moves

Minsky’s credit assignment problem? This is when you try to decide what move actually caused the win or lose in the game.

Evaluation Functions

Turing (chess)
white/black

Samuel’s (checkers)

Linear combinations

 C1

* piece advantage

+ C2

* center control

+ C3

* advantage center

+ some other things

Tic Tac Toe

100A + 10B + C – (100D + 10E + F)

A = number of lines with 3x’s

B = number of lines with single x

D = number of lines with 3 O’s

E = number of lines with 2 O’s

F = number of lines with a single O

[image: image5.png]
How do you know when the search criteria has been reached?

(1) Somebody won

(2) Number of ply

(3) Promising path

(4) Time left

(5) Stability of position

· You don’t have to look at all the arguments!

Mini-max with Alpha / Beta Pruning

· This will out perform mini-max twice as much will be done at a time

· Aplha cut-off : this will occur whenever a min. node descendant receives a value less than the alpha known to the main nodes parent, which will be a max node. The final value, min. value can be set to Beta.

· Beta cut-off: whenever a max node descendant receives a value greater than Beta known to the max nodes parent, the final value of max node can be set to alpha

A (= max (- infinity, 3) = 3

B (= max (5, 5) = 5

C (= max (3, 6) = 6

D (= max () = 1

Some C ++ code for the min-max algorithm

Umdsun1.umd.umich.edu/CIS/course.des/cis479/testab.cpp

(/(Pruning Diagram for Game Playing

This cuts off at the fourth static evaluation!

Alpha/Beta Function

Function Value (P, (, () // P is the position in the data structure

begin

// determine successors of P and call them

// P(1), P(2), ... P(d)

if d=0 then

value f(p) // static evaluation function

else

begin

m = (

for i =1 to d do

begin

t = - value (Pi - (, - m)

if t > m then

m = t

if => (then

exit loop

end

value = m

end

end

Alpha / Beta

we examine n nodes at depth D (without alpha / beta pruning) we can examine n nodes at depth 2*D

Heuristics

mini-max with (/(Pruning

Horizon Effect

· Win/loss could be the next move and it is hard to say what it will be. IF you stop at a three ply search, you don’t know if the next level will cause a win or loss for you.

Ways to deal with this problem!

Progressive Deepening- with this process the increase in cost is not to great. If you have extra time you could expand the tree a little bit farther until you run out of time.

Heuristic Pruning- This is where you throw out the moves that are no good or the moves that make no sense. Branch rules could be used to take care of this.

Heuristic Continuation- This will continue a path to see what could happen if you take a certain path through the tree.

Futility Cutoff- This is where you decide if it is worth continuing as the growth rate decreases.

· Secondary Search
· pick a level

· alpha / beta pruning or mini-max search

Book Moves- This is where you use moves that have already been proven to work.

· Search is a strong AI method, you should use search when you don’t have enough knowledge.

