
Knowledge Representation for Artificial Intelligence  (CIS 479)
Prolog

logic- predicate logic or propositional logic

P ( “the apple is red” [propositional logic example]

        red (apple)          [predicate logic example]

isa (bear, mammal)    [predicate logic example]

Declarative Programming -  use depth-first search & pattern matching instead of through conventional programming.

[image: image1.png]directed graph

parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

female(pam).

male(tom).

male(bob).

female(liz).

female(pat).

female(ann).

male(jim).

?- parent(bob, pat).

yes

?- parent(liz, pat).

no

?- parent(bob, ben).

no

?- parent(X, liz).

X = tom

more(y/n)? y

no

?- parent(bob, X)

X = ann

more(y/n)? y

X = pat

more(y/n)? y

no

?- parent (X, Y).

X = pam

Y = bob

more(y/n)?

X = tom

Y = bob

Wildcards

_ (underscore)

?- parent(_, Y).

does anyone have a child?

?- parent( _, _ ).

yes

1. Steps in prolog

2. build facts

3. build rules

4. implement both

· capitals are used the same as they are used in LISP

· /* */ this is how you add comments

Conjunctive Query- order does not matter overall, but search efficiency could be reduced by the order.

?- parent(Y, jim), parent( X, Y)

X = bob

Y = pat

· need to have a value for both X and Y for anything to be returned

?- parent(tom, X), parent(X, Y).

X = bob

Y = ann

more(y/n)? y

X = bob

Y = pat

?- parent(X, ann), parent(X, pat)

X = bob

Rule

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

offspring(X,Y) :- parent(Y, X)

?- grandparent(X, jim)

X = bob

mother(X, Y) :- parent(X, Y), female(X).

offspring(X, Y) :- mother(Y, X).

Recursive Rules

ancestor(X, Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y,Z).

· scope of variable, length of rule being fired

ancestor(pam, X).

X = bob

X = ann

X = pat

X = jim

Missionary Cannibal Problem – handout

course(cs101, smith, time(teus,3,5), loc(Cab, 2o3)).

when(cname, time) :- course(cname, _ , time, _).

?- when cs101, T)

T = time(tues, 3,5)

[image: image2.png].(a, .(b, .(c, [ ] )))

[a, b, c]

[H. | T]

H= car

T= cdr 

L= [a, b, c]

Tail = [b, c]

L = [a | Tail]

L = [a | [b,c]]

L = [a, b | [c]]

L = [a, b, c | [ ]]

not(x) :- Z, !, fail.

not(x).

· this allows for negative logic

· assert & delete

Semantic Networks

Perspective

· Frame- preprinted semantic network

· Stereotypes

· Slot & Filler

· If-Needed Inheritance

· Use current explanation until current view is proven to be invalid

· Procedural Attachment (demon)

1. Infer unobserved attributes

2. Frame contains information that can be used even if not observed

3. Frame contain attributes true of all instances

4. Frames contain typical instances of the object

1. What happens if “fleshing out” fails?

2. Select fragments of current situation that match and match against other frame candidate.

3. Make excuse for failure and use frame anyway.

4. Refer to list of stored links.

5. [image: image3.png]Inheritance links

· dog ( mammal ( animal(living things)

· Frames are static

1. Weakness of Frames

2. Tend to not be frame like

3. Definitions are important

4. Cancellation of default properties is tricky

· Scripts

· collection of slots

· active type information

1. Script handout

2. Entry condition

3. Result

4. Props

5. Rules

6. Tracks

7. Scenes

1. Strengths

2. Scripts can predict events and answer questions

3. Provide a framework for integrating observations into coherent interpretation

4. Provide means for detecting unusual events

1. Criticisms

2. ad hoc

3. either scripts only account for details in a restricted domain so they are not interesting or they apply everywhere which is not likely.

Relational Database

Relations ( tables

first

second

third

object

relation
object

comet

isa

horse

comet

is parent of
prancer

prancer

is 

fast

if X? is a horse

   X? is parent Y?

   Y? is fast

then X? valuable

1. Select data with second equal to isa and third equal to horse {creates temp set}

2. Project result will be first and call it A1 {horses}

3. Select data with second equal to is parent

4. Project result over? first and third and call it A2 {gives parent child}

5. Select data with second is and third equal fast

6. Project result over first

7. Join A1 and A2 with A1 first equal A2 first {horses with children}

8. Join B1 with A3 with B1 third A3 first.

9. Project result with first

A Data Sets

n-1 selections

n-1 projections

B Data Sets

n-1 joins

n-1 projections

with m rules

m*n select

m(2n-1) projects

m(n-1) joins

PAGE  

[image: image4.png]