;;; BESTFS.CL

;;; BEST FIRST

;;; (C) Copyright 1995 by Steven L. Tanimoto.

;;; This program is described in Chapter 5 ("Search") of

;;; "The Elements of Artificial Intelligence Using Common Lisp," 2nd ed.,

;;; published by W. H. Freeman, 41 Madison Ave., New York, NY 10010.

;;; Permission is granted for noncommercial use and modification of

;;; this program, provided that this copyright notice is retained

;;; and followed by a notice of any modifications made to the program.

;;; Best-First Search (Forward-Looking version).

;;; It uses an evaluation function based on the ordering of cities

;;; with respect to longitude. The method does not take into

;;; consideration the length of each partial path found so far.

;;; Thus it considers only the "remaining distance" to the goal

;;; in deciding how to order nodes on OPEN. Hence it is

;;; "forward-looking".

;;; Here is the adjacency data (identical to that used

;;; in DEPTHFS.CL and BREADTH.CL):

;;; Create the hash table ADJACENCY-INFO to store the French

;;; roads data, and define the functions for entering and

;;; retrieving this info.

;;; The second hash table, PATH-PREDECESSOR-INFO, is used

;;; during the search to allow the eventual tracing of

;;; the path back from the goal to the starting node.

(let ((adjacency-info (make-hash-table :size 20))

 (path-predecessor-info (make-hash-table :size 20)))

 (defun set-adj (x y)

 (setf (gethash x adjacency-info) y))

 (defun get-adj (x)

 (gethash x adjacency-info))

 (defun set-predecessor (x y)

 (setf (gethash x path-predecessor-info) y))

 (defun get-predecessor (x)

 (gethash x path-predecessor-info))

)

;;; Establish BREST's list of neighbors as (RENNES), etc.

(set-adj 'brest '(rennes))

(set-adj 'rennes '(caen paris brest nantes))

(set-adj 'caen '(calais paris rennes))

(set-adj 'calais '(nancy paris caen))

(set-adj 'nancy '(strasbourg dijon paris calais))

(set-adj 'strasbourg '(dijon nancy))

(set-adj 'dijon '(strasbourg lyon paris nancy))

(set-adj 'lyon '(grenoble avignon limoges dijon))

(set-adj 'grenoble '(avignon lyon))

(set-adj 'avignon '(grenoble marseille montpellier lyon))

(set-adj 'marseille '(nice avignon))

(set-adj 'nice '(marseille))

(set-adj 'montpellier '(avignon toulouse))

(set-adj 'toulouse '(montpellier bordeaux limoges))

(set-adj 'bordeaux '(limoges toulouse nantes))

(set-adj 'limoges '(lyon toulouse bordeaux nantes paris))

(set-adj 'nantes '(limoges bordeaux rennes))

(set-adj 'paris '(calais nancy dijon limoges rennes caen))

;;; Now we create a new hash table LONGITUDE-INFO to

;;; support the heuristic ordering mechanism.

(let ((longitude-info (make-hash-table :size 20)))

 (defun set-longitude (x y)

 (setf (gethash x longitude-info) y))

 (defun get-longitude (x)

 (gethash x longitude-info))

)

;;; The longitude of each city is stored in tenths of a degree.

;;; We use a local function with a LAMBDA form, since

;;; SET-LONGITUDE takes two arguments but we want a

;;; function that takes one argument for this use with MAPCAR.

(mapcar #'(lambda (pair) (apply #'set-longitude pair))

 '((avignon 48)(bordeaux -6)(brest -45)(caen -4)

 (calais 18)(dijon 51)(grenoble 57)(limoges 12)

 (lyon 48)(marseille 53)(montpellier 36)

 (nantes -16)(nancy 62)(nice 73)(paris 23)

 (rennes -17)(strasbourg 77)(toulouse 14)))

;;; We need one more hash table F-VALUE to

;;; remember the heuristic value at each node visited.

(let ((f-values (make-hash-table :size 20)))

 (defun set-f-value (x y)

 (setf (gethash x f-values) y))

 (defun get-f-value (x)

 (gethash x f-values))

)

;;; BEST-FIRST-SEARCH is the main searching procedure.

(defun best-first-search (start-node goal-node)

 "Performs a best-first search from START-NODE for GOAL-NODE."

 (set-goal goal-node)

 (let ((open (list start-node)) ;step1

 (closed nil)

 n l val)

 (set-predecessor start-node nil)

 (set-f-value start-node (f start-node))

 (loop

 (if (null open)(return 'failure)) ;step2

 (setf n (select-best open)) ;step3

 (setf open (remove n open)) ;step4

 (push n closed)

 (if (eql n (get-goal)) ;step5

 (return (extract-path n)))

 (setf l (successors n)) ;step6

 (setf l (list-difference l closed))

 (dolist (j (intersection l open)) ;step7

 (if (< (setf val (f j))

 (get-f-value j))

 (progn

 (set-f-value j val)

 (setf open

 (insert j

 (remove j open)

 open

 val)))))

 (dolist (j (list-difference l (append open closed)))

 ;; open the node J:

 (increment-count)

 (set-f-value j (setf val (f j)))

 (setf open (insert j open val))

 (set-predecessor j n))

 ; end of loop -------- this is implicitly step8

)))

;; The supporting functions:

;;; Use local variable to keep track of the goal.

(let (goal)

 (defun set-goal (the-goal) (setf goal the-goal))

 (defun get-goal () goal))

;;; EXTRACT-PATH returns the sequence of cities found.

(defun extract-path (n)

 "Returns the path to N."

 (cond ((null n) nil)

 (t (append (extract-path (get-predecessor n))

 (list n)))))

;;; SUCCESSORS retrieves the list of cities adjacent

;;; to N from N's property list.

(defun successors (n)

 "Returns the list of nodes adjacent to N."

 (get-adj n))

;;; LIST-DIFFERENCE is like the built-in Lisp function

;;; named SET-DIFFERENCE but it preserves the ordering in LST1"

(defun list-difference (lst1 lst2)

 "Returns a list of those elements of LST1 that do not

 occur on LST2."

 (dolist (elt lst2 lst1)

 (setf lst1 (remove elt lst1))))

;;; LONGITUDE-DIFF returns the absolute value of the

;;; difference in longitudes between nodes N1 and N2

;;; in tenths of a degree.

(defun longitude-diff (n1 n2)

 "Computes difference in longitudes."

 (abs (- (get-longitude n1) (get-longitude n2))))

;;; F evaluates the difference in longitude between

;;; the current node N and the goal node.

(defun f (n)

 "Return diff. in longitude from goal node."

 (longitude-diff n (get-goal)))

;;; SELECT-BEST chooses a node in step 3...

(defun select-best (lst)

 "Determines the best node to open next."

 (cond ((eql (first lst) (get-goal))(first lst))

 (t (better (first lst)(rest lst)))))

;;; The helping function BETTER for select-best checks

;;; to see if there is a goal node on LST with FVALUE

;;; as low as that of ELT.

(defun better (elt lst)

 "Helping function for SELECT-BEST."

 (cond ((null lst) elt)

 ((< (get-f-value elt)(get-f-value (first lst)))

 elt)

 ((eql (first lst) (get-goal))

 (first lst))

 (t (better elt (rest lst)))))

;;; INSERT puts NODE onto LST, which is ordered

;;; by FVALUE property, where VAL is the FVALUE

;;; of NODE.

(defun insert (node lst val)

 "Puts NODE into its proper place on LST."

 (cond ((null lst)(list node))

 ((< val (get-f-value (first lst)))

 (cons node lst))

 (t (cons (first lst)(insert node (rest lst) val)))))

;;; Use a local variable EXPANSION-COUNT for counting the

;;; number of nodes expanded by the algorithm.

(let (expansion-count)

 (defun initialize-count () (setf expansion-count 1))

 (defun increment-count () (incf expansion-count))

 (defun get-count () expansion-count))

;;; TEST sets EXPANSION-COUNT to 0 and

;;; begins a search from RENNES to AVIGNON.

(defun test ()

 "Tests the function BEST-FIRST-SEARCH."

 (initialize-count)

 (format t "Best-first-search solution: ~s.~%"

 (best-first-search 'rennes 'avignon))

 (format t "~s nodes expanded.~%"

 (get-count))

)

(test)

