;;; DEPTHFS.CL

;;; Depth-First Search.

;;; (C) Copyright 1995 by Steven L. Tanimoto.

;;; This program is described in Chapter 5 ("Search") of

;;; "The Elements of Artificial Intelligence Using Common Lisp," 2nd ed.,

;;; published by W. H. Freeman, 41 Madison Ave., New York, NY 10010.

;;; Permission is granted for noncommercial use and modification of

;;; this program, provided that this copyright notice is retained

;;; and followed by a notice of any modifications made to the program.

;;; the graph to be searched represents roads in France.

;;; Create a hash table ADJACENCY-INFO to store the French

;;; roads data, and define the functions for entering and

;;; retrieving this info.

;;; A second hash table, PATH-PREDECESSOR-INFO, is used

;;; during the search to allow the eventual tracing of

;;; the path back from the goal to the starting node.

(let ((adjacency-info (make-hash-table :size 20))

 (path-predecessor-info (make-hash-table :size 20)))

 (defun set-adj (x y)

 (setf (gethash x adjacency-info) y))

 (defun get-adj (x)

 (gethash x adjacency-info))

 (defun set-predecessor (x y)

 (setf (gethash x path-predecessor-info) y))

 (defun get-predecessor (x)

 (gethash x path-predecessor-info))

)

;;; Establish BREST's list of neighbors as (RENNES), etc.

(set-adj 'brest '(rennes))

(set-adj 'rennes '(caen paris brest nantes))

(set-adj 'caen '(calais paris rennes))

(set-adj 'calais '(nancy paris caen))

(set-adj 'nancy '(strasbourg dijon paris calais))

(set-adj 'strasbourg '(dijon nancy))

(set-adj 'dijon '(strasbourg lyon paris nancy))

(set-adj 'lyon '(grenoble avignon limoges dijon))

(set-adj 'grenoble '(avignon lyon))

(set-adj 'avignon '(grenoble marseille montpellier lyon))

(set-adj 'marseille '(nice avignon))

(set-adj 'nice '(marseille))

(set-adj 'montpellier '(avignon toulouse))

(set-adj 'toulouse '(montpellier bordeaux limoges))

(set-adj 'bordeaux '(limoges toulouse nantes))

(set-adj 'limoges '(lyon toulouse bordeaux nantes paris))

(set-adj 'nantes '(limoges bordeaux rennes))

(set-adj 'paris '(calais nancy dijon limoges rennes caen))

;;; DEPTH-FIRST-SEARCH is the main searching procedure.

;;; Note that we use Common Lisp macros PUSH and POP to simplify

;;; adding and removing elements at the front of lists.

(defun depth-first-graph-search (start-node goal-node)

 "Performs a depth-first search from START-NODE for GOAL-NODE."

 (let ((open (list start-node)) ;step1

 (closed nil)

 n l)

 (loop

 (if (null open)(return 'failure)) ;step2

 (setf n (pop open)) ;step3

 (push n closed)

 (increment-count)

 (if (eql n goal-node)

 (return (extract-path n)))

 (setf l (successors n)) ;step4

 (setf l (list-difference l closed))

 (setf open

 (append l (list-difference open l)));step5

 (dolist (x l)

 (set-predecessor x n))

 ; end of loop -------- this is implicitly step6

)))

;; The supporting functions:

;;; EXTRACT-PATH returns the sequence of cities found.

(defun extract-path (n)

 "Returns the path leading to N."

 (cond ((null n) nil)

 (t (append (extract-path (get-predecessor n))

 (list n)))))

;;; SUCCESSORS retrieves the list of cities adjacent

;;; to N from N's property list.

(defun successors (n)

 "Returns a list of nodes adjacent to N."

 (get-adj n))

;;; LIST-DIFFERENCE is like the built-in Lisp function

;;; named SET-DIFFERENCE but it preserves the ordering in LST1"

(defun list-difference (lst1 lst2)

 "Returns a list of those elements of LST1 that do not

 occur on LST2."

 (dolist (elt lst2 lst1)

 (setf lst1 (remove elt lst1))))

;;; Use a local variable EXPANSION-COUNT for counting

;;; the number of nodes expanded by the algorithm.

(let (expansion-count)

 (defun initialize-count () (setf expansion-count 0))

 (defun increment-count () (incf expansion-count))

 (defun get-count () expansion-count))

;;; TEST sets the count of nodes expanded to 0 and

;;; begins a search from RENNES to AVIGNON.

(defun test ()

 "Tests the function DEPTH-FIRST-SEARCH."

 (initialize-count)

 (format t "Depth-first-search solution: ~s.~%"

 (depth-first-graph-search 'rennes 'avignon))

 (format t "~s nodes expanded.~%"

 (get-count))

)

(test)

