Probabilistic Reasoning & Uncertainty for Artificial Intelligence (CIS 479)

Probabilistic Reasoning

1. Ad hoc uncertainty factors

2. Classical probability theory (Bayes Theorem)

3. Fuzzy set theory

4. Dempster Schaffer theory evidence

Why use it?

1. Relevant domain is random

2. Relevant domain is not random, rarely have access to enough data

3. Domain is not random, just not described in sufficient detail

Ad Hoc Uncertainty (MYCIN)

Questions?

1. How are certainties associated with antecedents?

2. How a rule translates input certainty to output certainty?

3. How do you combine fact certainty with several rules argue support?

[image: image1.png]
Purpose of explanation system

1. Assist in debugging

2. Inform use of current system

3. Increase confidence in advice

4. Clarification of terms and concepts used by system (help)

5. Increase users personal level of expertise (tutorial)

C/E – Cause Effect

 c/e

Broken belt (Fan not turning

E/C – Effect Cause

 e/c

Car not starting (Internal engine problem

why not? (counter factual reasoning)

what if? (hypothetical reasoning)

Phase of Knowledge Acquisition (KA)

1. Identification Phase (scope of problem)

2. Conceptualization Phase (paper prototype)

3. Formulation Phase (paper prototype (formal representation)

4. Implementation Phase (formal representation (rewritten for tools)

5. Testing Phase – Check both “classic” test cases and “hard” boundary cases most likely problems.

A. I/O failures (VI)

B. Logic Rules (bad rules)

C. Control Strategy

6. Prototype Revision

Truth Maintenance

· Hand checking

· some formalism for examining relationship among rules

· and / or trees

· decision trees

· inference trees

[image: image2.png]
· Domain has high payoff

· task requires common sense

Knowledge Acquisition Process (KA)

Domain Expert

Knowledge engineer

Similar to prototyping

Change is healthy

Techniques

1. Description (expert lectures or writes out task selection)

2. Observation

3. Introspection (knowledge engineer interviewing expert)

Knowledge Acquisition (KA) Difficulties

1. Expert may not have required knowledge of some areas

2. Expert may not be consciously aware of required knowledge

3. Expert may not be able to communicate knowledge to knowledge engineer

4. Knowledge engineer may not be able to structure knowledge for entry into knowledge base.

Architectural Principles for Expert Systems

1. Knowledge is power

2. Knowledge is often inexact & incomplete

3. Amateurs experts slowly

4. Knowledge is often poorly specified

5. Expert systems need to be flexible

6. Expert systems need to be transparent

7. Separate inference engine and knowledge base level

8. Use uniform “fact” representation

9. Keep inference engine simple

10. Explicit redundancy

Criteria For Selecting Problems

1. Recognized experts exist

2. expert do better than amateurs

3. Expert uses significant time

4. Cognitive tasks

5. Skill is routinely taught to neotypes (beginners)

[image: image3.png]
Forward Chaining

R3 – decreasing reserve

R1 – Interest down

R5 –

Backward Chaining

R4 or R5

· what risk?

· interest up?

Inference Net

[image: image4.png]
Probabilistic Reasoning

Certainty Factors (ad-hoc)

[image: image5.png]
how certain are you that the rule will fire?

· (0.9)(1.0) = .9

· (0.25)(1.0) = .25

Probability

P(E) = Number of desired outcomes / Total number of outcomes

 = | event | / |sample space|

P(note) = 1 – P(E)

P(A or B) = P(A) + P(B) – P(A (B)

P(A (B) = ((a and b are mutually exclusive)

P(A (B) = P(A) * P(B|A)

 = P(B) * P(A|B)

For independent events

P(B|A) = P(B)

P(A|B) = P(A)

Bayes Theorem (Non-Independent)

P(Hi |E) (Probability Hi is true given evidence E

P(E | Hi) (Probability evidence E is observed given Hi is true.

P(Hi) = Hi true regardless of evidence

P(Hi |E) = P(E | Hi) * P(Hi) / k

(P(E | Hk) * P(Hk)

n=1

Example in Tanimoto Example on Rain in Seattle

· Prior Probability it will rain

P(H) = 0.8

· Geese on the lake, given rain tomorrow

P(E|H) = 0.2

· Geese on lake, with no rain tomorrow

P(E | ~H) = 0.025

tilde (~) = not

Probability of rain tomorrow with geese on the lake

P(H | E) = (P(E | H) * P(H)) / P(E) = (0.016 / 0.021) = 0.7619

P(E) = P(E | H) * P(H) + P(E | ~H) +P(~H)

 = (0.02)(0.8) + (0.025)*(1.8)

 = (0.01) + (0.005) = 0.001

P(~H | E) = ?

P(~H | E) = (P(E | ~H)P(~H)) / P(E) = (0.005 / 0.021) = 0.2381

Skip odds in the book

Weakness of Bayes Theorem

1. Difficult to get all apriori and joint probability required

2. Database of priorities is hard to modify because of interactions

3. Lots of calculations

4. Outcomes must be disjoint

5. Accuracy depends on complete hypothesis

Probabilistic Inference Nets

Criteria for Problem Characteristics

1. Information available is of varying certainty or completeness

2. Need nearly optimal solutions

3. Need to justify decisions in favor of alternate decisions

4. General rules of inference are known or can be found for the problem

Fuzzy Set Theory

X (S This is not longer true

X (S Either in or out for most set theory

Question?

What constitutes a big pile of chalk?

If we have three pieces of chalk in the room is that considered a big pile of chalk? Some people might say, yes that is a big pile and some would not. Someplace between those three pieces of chalk and a whole room full of chalk the pile of chalk turns from a small pile into a big pile. This could be a different spot for different people.

F:[0,1]n ([0,1]

{0,1}

Tanimoto has examples of independent events and dependent events

Fuzzy Inference Rules

Probabilistic Dependent
Probabilistic Independent

A
a
a

B
b
b

~A
1-a
1-a

A (B
min(a,b)
a*b

A (B
max(a,b)
a+b – a*b

A (B
max(1-a,b)
(1-a)+a*b

A (B
max(min(a,1-b)),min(1-a,b))
a+b-2ab+a2b+ab2-a2b2

END OF NOTES FOR EXAM ONE

P (X ((X (Z))

P(X) = 0.5
Possibilistic

P(X) = 0.1
P(Y (Z) = max (P(Y),P(Z))

P(Z) = 0.2
P(Y (Z) = max(0.1, 0.2) = 0.2

P(X (P(Y (Z)) = max(1-P(X), P(Y (Z))

 = max(1-(5), 0.2)

 = 5

Probabilistic

P(Y (Z) = P(Y) + P(Z) – P(Y)P(2) = (0.1 + 0.2) – ((0.1)(0.2)) = (0.3 – 0.2) = 0.28

P(X (X (Z) = 1 – P(X) + P(X)P(Y (Z) = (1 – 0.5) + ((0.5)(0.28)) = 0.5 + 0.14 = 64

Probabilistic Reasoning

· Tanimoto pg. 342, pg. 338 car starting

S1: Clanking Sound

S2: Low pickup

S3: Starting problem

S4: Parts are hard to find

C1: Repair Estimate > $250

H1: Thrown connecting rod

H2: Wrist Pin Loose

H3: Car Out of Tune

[image: image6.png]P(H: | S)

Second Level

H4: Replace or Rebuild Engine

H5: Tune Engine

Steps for Building Inferences

1. Determine relevant inputs

2. Determine states of decision alternatives

3. Determine intermediate assertions

4. Formulate inference links

A. Logical Occurrence (+ Correlation)

B. Negative Occurrence (- Correlation)

C. Logical Implication

D. Conjunction (and)

E. Disjunction (or)

F. Exclusive Disjunctive (XOR)

G. Fiddle with probabilistic of inferences

Exam One Review

Tanimoto

Chapter 1-3 Expert Systems, LISP

Chapter 5 Search, A*, Branch & Bound, how algorithms work, Alpha Beta Pruning, Genetic algorithm

Chapter 7

Chapter 14

Search and Knowledge information

Nothing past certainty factors will be on the first exam

Dempster / Schaffer Theorem of Evidence

X,Y,Z

{ X } { Y } { Z }

{ X,Y } { X,Z } { Y,Z } ([0,1]

{ X,Y,Z } { }

This all needs to add up to 1

as more evidence is acquired views might change

Belief

B(A) + B(~A) (1

A = total exposed spots is 7

6 of 36 elements from (
((P(() ([0,1]

m(() = 0

(m (x) = 1

((A

((F

Evidence

m(F) = 1 (Evidence is certain

F (A (0

Belief (A) = (m(B), A (B

Doubt in (A) = Belief (> A)

Plausibility (A) = 1- Doubt(A)

Belief (() = 0
Plausibility(() = 0

Belief(() = 1
Plausibility(() = 1

Plausibility (A) (Belief (A)

1 (Belief(A) + Belief(~A)

Plausibility(A) + Plausibility (~A) (1

If B (A then

Belief (B) (Belief A

Plausibility (B) (Plausibility (A)

Rule of combination for uncertainty evidence – Orthogonal

A ((
if true

[m1 + m2] A = (xny = A M1(x)M2(y)

 1 - (xny = (M1(x)M2(y)

if A ((then [M1 + M2] (= 0

Numeric Example

S = Snow

R = Rain

D = Dry

(= {S, R, D}

|P(()| = 8

p. 275 Tanimoto

Two Pieces of evidence

1. Temperature is below freezing (temp < 32 degrees F or 0 degrees C

2. Barometric Pressure is falling (storm likely)

(
{S}
{R}
{D}
{S,R}
{S,D}
{R,D}
{S,R,D}

Mfreeze
0
0.2
0.1
0.1
0.2
0.1
0.1
0.2

Mstorm
0
0.1
0.2
0.1
0.3
0.1
0.1
0.1

Mboth
0
0.282
0.282
0.128
0.18
0.51
0.51
0.026

All values in the chart should add up to one

The belief ({S,R}) = Mboth({S,R}) + Mboth({S}) + Mboth({R}) = 0.744

No numeric examples will be on the test

M1

· 2500 rules

· Symbolic Variables

· Uncertain Knowledge

· Backward Chaining (mostly)

· Limits forward chaining

· Symbolic List processing

· Debugging Environment

· M1.exe, M1.cfg

· Explanation Facilities

· M1 seeks values by

1. Value of expression computed by M1

2. Value already in cache

3. Inference Rules

4. Prompt user for value

· Use lower case

· To comment /* */

multi-valued (preferred-color).

question(preferred-color) = ‘Do you prefer red or white wine?’.

legalvals(preferred-color = [red,white].

if x = y cf 30 then

z = w cf 50.

initial data =

[preferred-color, preferred-body, prefferred-sweetness].

automatic menu(preferred-color)

if best-body = light

then recommended-body = light

if best-color = white

then recommended-color = white

if best-X = V

then recommended-X = V

if recommended-color = red and

recommended-body = medium and

recommended-sweetness

then wine = gamay.

if recommended-color = c and

 recommended-body = m and

 recommended-sweetness = s and

wine (c,b,s = w)

then wine = w

multivalued(wine)

multivalued (wine(color,body,sweetness))

no automatic question

(wine(color,body,sweetness))

if age N and

n > 200

then

category = adult.

if distance = D and

fair-per-mile = M and A * D = R

then

total-fair = R.

Prefix
Eliminate dash on left

Infix
Dash on both sides

Postfix
Eliminate dash on right

Readability is reduced if you use these commands. It is recommended that you do not use these.

MYCIN

· Prescribe drug regimen for infectious virus and diseases

Design Parameters

1. Program is competent & easy to use

2. Handle a large, changing body of knowledge

3. Interactive

4. Must take time into account

5. Work with incomplete or uncertain information

Three Components

1. Consultation system(inference)

2. Explanation System

3. Rule acquisition /modification system

Premise

· ($and(same cntxt gram gram neg)

 (same cntst morph rod)

 (same cntxt hir aeroiste))

· (conclude cntxt class

enterobacteriacae tally.8)

context tree

working memory

(ident orgi enterobacteriacae.8)

(attribute object value)

AOV Triples

Control Structure

· backward chaining

· depth first

if there is an organism requiring therapy and consideration has been given to the

 possibility of other orgs requiring therapy.

then compile a list of possible therapies and select the best one from the list

Monitor- evaluate premise of current rule and discards it if false to try the next rule. {restrict by cntxt}

findout- gathers evidence for and against rule premise

Explanation System

1. Display rule being invoked (any point)

2. Record rule invocations and associate them with questions asked

3. Use rule index to retrieve particular rules to answer questions

Evaluation

1974- Panel of 5 experts approve 72% of 15 recommendations

1979 – Panel of 8 experts (5 medical examiners, 1 resident, 1 student, 1 research expert)

compare MYCIN to actual

they looked at 10 cases

52% MYCIN was correct

EMYCIN

· first expert system shell

Sacon if composition = (list of methods)

and error < 5 and

and stress > 0.5 and

cycles > 1000

then SS stress = fatigue

Monitor of behavior

1. Explain { rules}

2. Test {composition of current to stored results}

3. View {stored rules}

Knowledge Acquisition & Maintenance

As you extend a rule base errors start to occur

1. Gaps in ruleset {combinations not covered}

2. Overlapping Rules {Inconsistent rules}

3. Rule obsolescence {new Discoveries invalidate rules}

Program Errors

1. Drawing false conclusions

2. Asking irrelevant questions

Teiresius

how/why

· maintain a long list of dependencies

· complicated data structure

· first attempt at knowledge acquisition

Neomycin

· Domain independent heuristics

· Add on to EMYCIN

How an expert system can be built (handout)

Tanimoto expert system p. 100 105

match1

patterns ? wildcards

match4 `((?X)bc(?Y)) `(a b c d))

match5 `(a b (numberp x) d) `(a b c d))

shrink (program on 479 web page
108 Tanimoto

Leibnite (117 Tanimoto

RETE – Pattern matching

Knowledge Representation (syntax, semantics)

· rules

· OAV

· Probabilistic reasoning

· Predicate Logic

· Semantic Networks

· Relational Database

· Scripts

Production Systems

Procedural knowledge

How to

Relational Database

· static

· constraints – attributes to sets of values

· Predicate Logic – Rules & Relationships

· Concept Hierarchy (object library, class library)

Semantic Networks

· inheritance

· links

· labels

Frames

· Preestablished semantic networks

Scripts

· Series of frames

Conceptual Dependency

· Types of Knowledge

1. objects – physical & concepts

2. Events- maybe time, maybe cause & effect

3. Performance (how to)

4. META Knowledge – knowledge about how to use knowledge

· Stages of knowledge use

1. Acquisition

· Structure of facts

· integration of old & new knowledge

2. Retrieval (recall)

· chunking

3. Reasoning

· Formal reasoning – deductive theorem proving

· Procedural Reasoning – Expert System

· Reasoning by Analogy – Very hard for machines

· Generalization – Reasoning from examples

· Abstraction – Simplification

Knowledge Representation Issues

1. Grain Size – Resolution Detail

2. Scope

3. Modularity

4. Understandability

5. Explicit Vs. Implicit Knowledge

6. Procedural Vs. Declarative knowledge

Advantage of Procedural Knowledge

1. Store each fact once

2. Easy to add new facts

Advantage of Procedural Knowledge

1. Easy to Represent “how to”

2. Easy to represent any knowledge not fitting declarative format

3. Relatively easy to implement heuristic stuff

Good Knowledge Representation Scheme

1. Represential Adequacy – all knowledge in problem domain

2. Inferential Adequacy – ability to manipulate structures to desire new structures

3. Inferential Adequacy – Incorporate new knowledge & focus attention

4. Acquisition – Easy to add facts

5. Semantic Power

a) Support Truth theory

b) Constraint Satisfaction

c) Cope with incomplete or uncertain knowledge

d) Some Common Sense Reasoning Capability

Knowledge Representation

1. Properties in every domain?

if so what are they...

2. At what level should knowledge be represented?

3. Given a large amount of knowledge, how do you access the relevant parts quickly

(= is a

(= a kind of

dog (pet (living think

(= is part of

(= has a part

finger (hand (body

Knowledge Representation Problems

1. Initial selection at best structure

2. Fill in details from current situation

3. Find better structure if first choice is bad

4. None of available structures are appropriate

5. When to create and remember a new structure

Slot & Filler

(putprop ‘dog ‘animal ‘isa)

(putprop ‘animal ‘dog ‘ako)
[image: image7.png]
x= lobster

y = animal

n = scallop

(defun isatest (x y n)

(cond ((EQ x y) 7)

 ((? group n) nil)

((member y(get x ‘isa)) y)

(T (ary mapcar #’lambda (xx)

(isatest x x y)

(1 – n))

(get x ‘isa))

)

(defun any (l)

(cond ((null l) nil)

(car l) T)

(T (any (cdr l))

)

Relationship Matrix

[image: image8.png]
[image: image9.png]
Value Inheritance Procedure

[f = node, s = slot / property]

1. Form a queue consisting of node f and all class nodes found in f’s isa state

2. Until queue is empty or value found if queue front has value in s then value found else remove first queue element and add nodes related by isa

3. If value found then repeat it else announce fail.

If Needed Inheritance

[f = node, s = slot / property]

1. Form a queue consisting of node f and all class nodes found in f’s isa state

2. Until queue is empty or value found if queue front has procedure to compute S value then value found else remove first queue element and add nodes related by isa

3. If value found then repeat it else announce fail.

Default Inheritance

[f = node, s = slot / property]

1. Form a queue consisting of node f and all class nodes found in f’s isa state

2. Until queue is empty or value found if queue front has default value in s then value found else remove first queue element and add nodes related by isa

3. If value found then repeat it else announce fail.

N-Inheritance

This method uses all three inheritance methods previously mentioned

Z-Inheritance

