M1 Manual Intro 1 / 19

Programming M1

This file started as an alphabetical list of M1 commands, but you will need this intro to get the most out of it. (If you have improvements, feel free to add them, Al Gruber)

How to get M1 to execute anything.

Instead of executing procedures or lines, M1 is "motivated" by goals. At the top of a program, you give M1 some "goal-variables." Finding values for these is M1's only job, and it will ignore all code that does not help with this. When the goals have values, M1 announces them and the run is over.

A goal attains a value by being in the conclusion of an if-then statement (a rule),

e.g: if color = red then wall = pretty.

M1 will execute this statment only if "wall" is its goal. If "color = red" it will mark wall as "known" and end the program unless there is another goal. (The value you assign to wall could be true, false, ugly, or whatever.) But if "color = blue", it will search for another statement with "wall" in its conclusion.

To get M1 to do anything non-trivial, your program must pose sub-goals. If above, color is unknown, M1 treats it as a sub-goal, searching for statements with "color" in their conclusion, so that it can then return and conclude the main goal, "wall".

Since M1 will not execute any lines that don't lead to a goal, there are "fake" side-effect statements to fool it into doing what you want. Assuming that you have a goal named "mainGoal1", here's how you would print "Hello World".

if display("Hello World")

then mainGoal1 = banana.

Though the line 'if display("Hello World")' looks like a premise (or question), M1 treats it as true. It exists for its side effect, which is to print the ("Hello World") to the screen.

In addition to if-then statements, M1 is also attracted to certain statements of the form command(goal) = "whatever". Example: question(mainGoal1) = ["Enter a value for this goal"].

M1 has a facility called the cache, (accessible via the cache menu) which shows the value of every goal pursued during the current run. Once a fact is known, M1 sees no reason to revisit it. A used goal cannot be turned into a goal a second time.

Variables and Data Types

M1 calls almost all items "expressions," so the following terms are mine:

1. Lvars, goals, facts, values,

2. MatchVars,

3. Values, strings and numbers,

4. Lists, and Structures.

Lvars

The following statement is an M1 fact: "apples = macintosh."

The part on the left is sort of a "pseudo-variable", which I call an Lvar because it appears on the left. When a term appears on the left, it is an Lvar; on the right it's a value. If you move it from left to right, it changes from Lvar to value. Values and variables are not declared before use.

The big point here is that M1 does not evaluate right-side "terms". The lines:

tastiness = delicate.

cleanliness = tastiness.

do not not assign: cleanliness = delicate.

Instead, the cache will show that tastiness has the value delicate, and cleanliness has the value tastiness. For the same reason, the command display(cleanliness) will print on the screen: "cleanliness", and not "tastiness" or "delicate.

Since M1 does not make a big distinction between Lvars and values, a term can play both roles in the same program, e.g:

if word = verb

and verb = regular-ending

and regular-ending = ed

then tense = simple-past.

In M1, an if-then statement is called a rule:

if sky = cloudy

/* premise
*/

then forecast = rainy.
/* conclusion
*/

Lvars that appear in premises become temporary goals. Before concluding that "forecast = rainy", M1 must check whether "sky = cloudy". Goals are satisfied by being provided values, which are usually found in conclusions, but can also be statements of fact, as in our lead-off example: "apples = macintosh." A satisfied goal is also a statement of fact.

Facts may be associated with degrees of certainty (-100 to +100), which you can attach in various ways. If a sought value has a certainty below 100, M1 will continue trying for a higher certainty. This does not mean that the program will hang up. Once every possibility has been tried, the goal is assigned its value, which may even be "unknown".

Another twist is that goals can be declared to have multiple values,

multivalued(best-color).

/* permits multiple values */

best-color = red cf 100.

/* cf can range from -100 to +100 */

best-color = white cf 100.

Lvars have another peculiar capability: they can be joined into compound names: taste-1, taste-2, after-taste, taste-winner, etc. This is most important when they are joined to MatchVars, which see below.

MatchVars

MatchVars are the only variables the M1 manual acknowledges, but they are quite unlike normal program variables. They get their values from pattern-matching. They are recognizable by the fact that they must be capitalized.

Here is an example:

Preliminary:
goal = begin_consultation.

screen1 = "Hello, Hello, Hello".

MatchVar:

if screen1 = Msg

/* assign value to Msg */

and display(Msg)

then begin_consultation.

This does not set screen1 to Msg, but Msg to the value of screen1. MatchVars are assigned values by being on the right of the equal sign.

To look a little deeper, M1 searches the cache for a line matching:

screen1 = Msg

finds:

screen1 = "Hello, Hello, Hello".

and decides to try Msg = "Hello, Hello, Hello".

M1 then tests display(Msg) to make sure that the test value will fit here. This presents no problem in the present case, but it is important to realize that in multi-line statements, the match must work for each occurrence.

Final match:
if opening_screen = "Hello, Hello, Hello"

 and display("Hello, Hello, Hello")

then begin_consultation = yes.

The main points about MatchVars

1.
The scope of a MatchVar is a single if-then statement.
MatchVars variables have no permanence. They are re-matched in each if-then statement, or other statements that permit them. They cannot appear in the cache. Facts cannot contain MatchVars; the cache shows the "real" values M1 has substituted. MatchVars cannot appear in goal or initialdata statements because these do not allow matching.

2.
MatchVars can be attached to Lvars and values with a "-"
This is a most important fact. It makes it possible to use Lvars like arrays and in loops.

if 3 = Count

then phase-Count = done-Count.

Which M1 will turn into:

if 3 = 3

then phase-3 = done-3.

3.
MatchVars can be used in most M1 constructs.
Assuming that the current goal = burgundy, the X's below will be set to burgundy:

question(wants-X) = ['Would you like ',X].

display(["I will have ",X, " please."]).

This would be converted by M1 into . . .

question(wants-burgundy) = ['Would you like ',burgundy].

and

display(["I will have ",burgundy, " please."]).

Creating MatchVars

Because MatchVars depend on pattern-matching, the rules for making them need attention:

Case 1. Assignment between Lvars

The simplest case is using MatchVars for purposes of assignment. In the previous example where we wanted to display a screen message named screen1, we could not write display(screen1) because that would print to screen: "screen1". Instead we had to do:

if screen1 = Msg

and display(Msg)

then begin_consultation.

Suppose we want to set recommended-body to the value of expert-body. We cannot write: "recommended-body = expert-body." because that would set: recommended-body = "expert-body".

Instead, you must write:

fact: expert-body = full.

/* this is usually already in the cache */

if expert-body = V

then recommended-body = V.

And here's what M1 does:

if expert-body = full

/* sets V = full */

then recommended-body = full.
/* sets recommended-body = full */

In the Assignment Case, you set the conclusion to the value of one of its premises. Notice that these MatchVars are to the right of the "=".

Case 2. Comparing facts

This example does a straight comparison between two Lvars, essentially . . .

"if expert-body =
good-body" but using MatchVars because right-hand Lvars are not evaluated:

goal = [recommended-body-1].

fact: expert-body = full.

/* this is usually already in the cache */
fact: good-body = full.

/* usually already in the cache

*/
if expert-body = V

and
good-body = V

then recommended-body-1 = great.

Again, this case has both MatchVars to the right of the "=".

Case 3. On the left of a conclusion

This example shows that when a MatchVar is attached to an Lvar, it can appear on the left of an "=". Being part of the goal, it must match the variable in the goal statement.

goal = [recommended-body-1].

fact: expert-body = lotsa.

if expert-body = lotsa

then recommended-Trait-1 = high.

Of course, additional matches are fine, as long as they really match:

goal = [recommended-body-1].

fact: expert-body = full.

fact: default-body = medium.

fact: other-body = whatever.

if expert-Trait = full

and default-Trait = medium

and other-Trait = whatever

then recommended-Trait-1 = empty.

Case 4.
You may have more than one MatchVar in a statement:

goal = best-city.

if preferred-X = Y

then best-X = Y.

M1 will replace this with:

if preferred-city = Y

then best-city = Y.

and then seek a value for Y.

In the following example of simple assignment, M1 will assign the appropriate color to each MatchVar.

ListName = [blue, green, yellow, orange, purple].

if listName=[C1, C2, C3, C4, C5]

and whatever

then goal2.

In expressions of the form "A|B", A is the first element of the list and B is the rest, see List. M1 will create First as the atom "blue" and Rest as the list [green, yellow, orange, purple].

if listName=[First|Rest]

and whatever

then goal2.

Case 5. The failing combination

MatchVars cannot appear on the left of two premises, without a conclusion to anchor them.

goal = [recommended-body-1].

expert-body = lotsa.

recommended-body = high.

if expert-Trait = lotsa

and recommended-Trait = high

then recommended-body-1 = high.

Case 6.
 Finally, there is also a wild-card MatchVar "_"

This lets M1 substitute different values at will. The manual gives this example:

if in-stock = AnyItem

 and cashier = AnyName

then open-the-store.

This will succeed if M1 has a value for in-stock and cashier. It can be shortened to:

if in-stock = _

 and cashier = _

then open-the-store.

The only advantage of the wild-card seems to be one of documentation. If you see a "_" you know that you are looking at a wild-card.

Values, Strings and Numbers

M1 sees no difference between:

best-color = white

best-color = 'white'

best-color = "white"

The next two line need the quotes; the "W" would otherwise mark White as a MatchVar; the two-word string would not be interpreted as a single value.

best-color = "White"

best-color = "white lightning"

Also, to process a value with a string function, you must first convert it to a string, with the stringof() function.

Finally, M1 understands both integers and reals and offers a selection of numeric functions. But the weirdness of Lvars and MatchVars makes numerics look counter-intuitive. See Meta-stuff/arithmetic propositions, below.

Lists

The format for a list is: listName = [item1, item2, . . . itemN].

You can use a MatchVar to access a list:

Given:
listName = [blue, green, yellow].

if listName = Lst

and display(['This is the list: ',Lst])

then goal1.

This displays: This is the list: [blue,green,yellow]

M1 also offers the "|" symbol to distinguish between the first item and the rest of a list. Here 1 Lvar leads to the creation of 2 MatchVars.

listName = [blue, green, yellow].

if listName=[First|Rest]

and display(['Front of list: ',First])
/* shows: Front of list: blue
*/

and display(['Rest of list: ',Rest])
/* shows: Rest of list: [green,yellow]

then goal2.

And M1 provides a function for the length of a list, which see.

Structures
An M1 structure is a (non-numeric) function without calculations. It has one or several inputs, and a single output which is not derived by formula but simply listed as a given,

structureName(input1, input2, input3, input4. . . inputN) = outputValue.

Eg:
wine(white, light, dry) = chablis.

This structure is best visualized as a database entry in a table with 4 columns:

Var1,
Var2,
Var3,
Output

e.g:
white
light
dry

chablis

This can be accessed with a MatchVar as follows:

if wine(white,light,dry) = Brand

then someGoal.

Here's a more complicated version:

if recommended-color-Idx = C and

recommended-body-Idx = B and

 recommended-sweetness-Idx = S and

 wine(C,B,S) = W

then brand-Idx = W.

Meta-Stuff

M1 does not provide a straight-forward list of statements or commands to control its operations or program flow. But it provides some reasonable equivalents called meta-facts and meta-propositions.

Meta-facts

Here is a typical meta-fact command: question(Lvar) = 'questionString'.

This tells M1 to ask the user to input a value. The 'questionString' contains what you want the user to see. M1 assigns his answer to the (Lvar). This is perhaps called a fact because of the "=", but there are also meta-facts without an equal sign, e.g: multivalued(Lvar). The meta-facts are explained in the alphabetical list.

Though meta-facts and meta-propositions look similar, it is important to know which is which. Meta-propositions appear in rules, but meta-facts cannot. The concept of truth-value is important for meta-propositions, but irrelevant for meta-facts.

Propositions and meta-propositions

A proposition is a statement with a truth-value. Both the premises and conclusion in a rule are propositions. M1 distinguishes between programmer-written rules, arithmetic propositions, and meta-propositions.

Arithmetic propositions consist of numbers (including MatchVars but not Lvars), arithmetic operators (including inequality symbols) and built-in arithmetic functions. The main thing to remember is that though Lvars can have numeric values, they can't act like numbers.

You can't write:
if age > 21

then voting age = true.

Instead you must use a Matchvar:

if age = N

and N>20

then voting age = true.

Here's an example user function:

if N * N = SQ

then square(N) = SQ.

The function call:

if square(5) = S5

and display(['Square: ',S5,nl])

then g1.

1. Here's how pattern matching does it here . . .

2. given square(5), M1 finds the match:

square(N)

3. so it does . . .

if 5 * 5 = SQ

then square(5) = SQ.
4. then it does the assignment of SQ . . .

if 5 * 5 = 25

then square(5) = 25.

Meta-propositions consist of 4 types:

1. Side effect commands

2. Built-in Functions

3. Lvar status reporters

4. Cache searchers

There are two side effect commands, display('text') and do('command'), which are used for their side effects. M1 always considers these true. See alphabetical list.

The most important built-in function is the loop:

These 4 lines cause M1 to loop . . .

question(word-N) = ['What is ',word-N,'? -- Enter ''.'' when done. '].

loop-1:
if positiveinteger = N

/* this increments N = 1..infinity

*/

and word-N = '.'

/* when this is true, the loop stops
*/

then sentence.

Here's the result . . .

What is word-1? -- Enter ''.'' when done.

What is word-2? -- Enter ''.'' when done.

What is word-3? -- Enter ''.'' when done.

etcetera, until user enters '.'.

If positiveinteger is equated to a MatchVar, it increments the MatchVar on each pass. Line 2 is there to end the loop by becoming true, which will make the entire rule true, thus giving "sentence" a value, which in turn will cause M1 to lose any further interest in this goal. Most remarkably, there is no explicit call to the loop. Somehow, the line question(word-N) calls the loop rule which causes the increment, etc.

Most functions are shown on the alphabetical list. Not all of them worked for me.

The status reporters use the word "is", e.g: "if wine is known", which is shown on the alphabetical list under Status.

The cache searchers look for facts in the cache without setting off a program-wide search for an Lvar, e.g:

if cached(wine(C,B,S)-value-N = W)

then wine(C,B,S) = W.

See the alphabetical list under Cache.

Alphabetical List of M1 Commands

This section is an alphabetized list of the M1 commands I could chase down. The main thing I tried to add is syntax examples. But it also includes some functions I had to write. Some of the items are incomplete. Improvements are welcome.
Al Gruber
Typographic Note: optional items are: [* optionalItem *]
"-" OPERATOR:
--
M1 lets you modify variable names in the midst of a run.

You create something like an array by using the "-" and a MatchVar.

Format:
Lvar-MatchVar

E.g.:
round-Number -- if Number ranges 1..10, the variable becomes:

round-1, round-2 . . . round-10.

e.g.:
wine-Trait-RoundNumber

here Trait might range through: body, sweetness, color, fruitiness

and RoundNumber might again range through 1..10.

The use might be:

wine-body-1

= heavy.

wine-body-10

= light.

wine-color-2

= red.

wine-sweetness-5
= dry.

wine-fruitiness-3
= intense.

E.g.:
The Matchvar can come before, between, or after the invariable terms:

Part-component-Number = window-component-3.

wine-Trait-RoundNumber =wine-color-2.

Also see MatchVar, asknumber

AND:

-- see proposition

APPEND:([],X)=X.
???

ARITHMETIC FUNCTIONS:

fix(N)

- returns integer part of N

float(N)

- returns real N

real_round(N)
- rounds up to largest integer

sqrt(N)

- square root

truncate(N)
- returns integer part as a real

eg1: float(15 + sqrt(14.4)* truncate(7+12.5))

eg2:
if 5 = N

and 12.7 = M

and 44 = L

and truncate(fix(N) + sqrt(M) * float(L)) = Total

and display([Total,nl])

then g2.

eg3:
if truncate(fix(N) + sqrt(M) * float(L)) = Total

then bigFunc(N,M,L) = Total.

if bigFunc(5,12.7,44) = Result

and display(['bigFunc: ',Result,nl])

then g2.

ATOM:
building block for values and variables

whatsis == 'whatsis' == "whatsis""

but: whatsis-whosis <> "whatsis-whosis"

also: to allow Capitalized Values, enter them with quotes: "Capvalue"

also see DISPLAY

ASKNUMBER:
--
meta-fact, creates numbered variables

asknumber(Lvar) = "how many vars do you want". /* Creates: Lvar-1 ...
Lvar-n
*/

AUTOMATICMENU:
--
meta-fact, used in DOS command mode, prints question choices.

automaticmenu(Lvar).

automaticmenu(X).

/* print menu for every Question in program */

CACHED: -- meta-proposition, searches cache for found facts;

cached(Lvar [* = value *] [* cf CF *])

eg: if cached(wine = red cf 100)

DISABLE:
--

meta-fact,

DISPLAY
:
--

always-true meta-proposition used in premise for its side-effect;

prints to screen;

display("textString").

eg: if display("Hello World")

then goalVar = banana.

To Display a Variable instead of a String . . .

if screen_name_var = MatchVar

and display(MatchVar)

then goalVar.

Eg: if opening_screen = Msg

and display(Msg)

then begin_consultation.

Gotcha1:
BAD: if MatchVar = screen_name_var

GOOD: if screen_name_var = MatchVar

Gotcha2:
if display(Msg)

then begin_consultation.

This will print "Msg"

Format codes for display():

newline:
nl

tab:

tab(N)

--
tab(4)

$-FORMAT
$(N)

--
$(123)

Gotcha3:
BAD: display("hello",nl)

GOOD: display(["hello",nl])

DO:

--
always-true meta-proposition used in premise for its side-effect;

calls M1 menu commands during a program run

do(M1 menu command)

eg:
if do(show gvar1)

then goal3.

eg: do(show),

do(show Lvar),

do(trace),

do(list),

do(list label),

do(exit)

* for full list of menu commands, run program

* In do(), commands are shortened to 1 word plus an optional argument

ENUMERATEDANSWERS:
--
meta-fact, lists numbered choices on DOS command line:

And allows numeric answers.

enumeratedanswers(Lvar).

eg:
enumeratedanswers(sauce).

EXPLANATION:

-- meta-fact, to write custom explanation for Questions

explanation(rule-id) = [Text].

explanation(Lvar) = [Text].

EXTERNAL:
--
function call to another programs

external(functionName, [* inputArgToFunc *]) =
[outputsFromFunc]

== EQUALITY-TEST -- comparing unevaluated atoms

if Xvar == Xvar

if red == red

if 3.3 == 3.3

if
wine(red,dry) == wine(red,dry)

COMMENT: not tested

FACT:

Lvar [* = value *] [* cf number *]

kb-1: best-color = red cf 80.

raining. == raining=yes. == raining cf 100. == raining = yes cf 100.

Certainty Factor CALCULATIONS of Premises:

totalCF = cf1 + cf2*(100 - cf1)*.01

Combining CALCULATED PREMISE-CF with Conclusion-CF

totalCF = conclusion*premise*.01

Combining EXPLICIT PREMISE-CF with Conclusion-CF

BAD:
if mainDish = meat cf 40 then best-color = red cf 50.

* Only executes if meat-cf = 40. Then conclusion-cf = 50.

BETTER:
if mainDish = meat cf N and N>=40 then best-color = red cf 50.

GOAL:
--
meta-fact, sets program goals at top of program; also see initialdata.

Difference between goal statement and initialdata:

When goal-goals are achieved, the program ends and prints a canned explanation.

When initialdata-goals are achieved, the program ends without a canned explanation.

goal = [List: g-var1, . . . g-varN]

eg: goal = best-color

About goals/subgoals:

-- appear in every conclusion of an if-then

-- results of search can be accessed in cache

-- for format, see FACT: Lvar [* = value *] [* cf number *]

goal-Status -- meta-proposition to check on goals listed in cache

format: "Lvar is StatusWord"

StatusWords . . .

definite
-- certainty = 100

displayed
--

given

--

known

-- certainty > 20

sought

-- causes instant seeking, always returns true

unique

-- only one value known, >20

unknown

-- no value or <= 20

code example:

if brand-N is known

then endAtRun-N.

INITIALDATA: -- meta-fact, same action as goal except that M1 does not print the automatic explanation at program end. Useful if you want to do your own ending.

IS: -- checks certainty factor status; see goal-Status

LABEL:

Format -- Label:

Label format kb-5 belong to M1, can't be used by programmer

LEGALVALS:

--
meta-fact, sets choices for question();

but does not limit actual cache values

legalvals(Lvar) = [choice1, . . . choiceN].

eg: legalvals(sauce) = [spicy, sweet, cream, tomato].

Also: legalvals(Lvar) = number([* lowestAllowed, highestAllowed *]).

LENGTH:

--
function, returns number of items in a list

length(anylist) = lengthNum.

eg: length([]) = 0.

eg: length([A,B,C,D,E]) = 5.

LIST:
--
data structure, see intro

Format: listName = [item1, item2, item3, item4, item5] . . .

e.[a,b,c,d] means add e into [a,b,c,d]

| == tail of list, eg: [X|Y] == (X = element1) (Y = the rest)

List-Functions

Length: built-in function

Some User-functions: sum(), first(), rest(), member.

It seems convenient to use recursion in some of the list functions

sum(Lst) -- adds up a list of numbers, recursive

sum1:
sum([OneNumber]) = OneNumber.

Sum2:
if sum(SetOfNumbers) = SetTotal

and FirstNumber + SetTotal = GrandTotal

then sum([FirstNumber|SetOfNumbers])=GrandTotal.

Calling sum:
if l = L

and sum(L) = S

and display(['Sum: ',S,nl,nl])

then g1.

Member(SearchWord,Lst) --
returns yes if SearchWord is in List, else false.

Calls functions first() and rest(). Recursive.

member1: member(Any,[]) = false.

member2:
if first(Lst) = SearchWord

then member(SearchWord,Lst) = yes.

member3:
if rest(Lst) = Rest

and member(SearchWord,Rest) = yes

then member(SearchWord,Lst) = yes.

First(Lst) -- returns first item from a list

first1: first([])

 = unknown.

first2: first([OneItem]) = OneItem.

first3: first([One|Rest]) = One.

Rest(Lst) -- returns list of all but first item from a list

rest1: rest([])

= [].

rest2: rest([OneItem])
= [].

rest3: rest([One|Tail])
= Tail.

LISTOF:

-- function, returns cached values of an Lvar as a list

Often used with "ordered" which sorts items by cf

Format: listof(Lvar) = listOfFacts

Format2: listof(MatchVar, proposition) = listOfCf --

?? accesses individual items on list ??

listof(brand-Num) = WineNames -

returns list, eg: WineNames = [Pinot noir,Zinfandel]
listof(brand-Num) = [WineName] -

invoked if cache holds exactly 1 item, eg: WineName = Zinfandel

listof(Brand,ordered(brand-Num) = Brand) = [FirstWine, SecondWine]

invoked if cache holds 2 items , returns them in FirstWine, SecondWine

listof(Brand,ordered(brand-Num) = Brand) = [Wine1|Others]

invoked if 1 or more, eg: Wine1 = Zinfandel,

Others = [Pinot,Bana,etc], or even []

MATCHVARS:
--
M1's variables, see intro for discussion

Format:
must start with CAP or _

eg: Var, _var

_ = AnonymousVar

Scope:

within rule or fact

Uses of Matchvars --

For examples of loops, see positiveinteger.

Example use: Collapse multiple rules:

kb-12:
if symptom = S

/*
eg: S = fever, S = rash, etc */

and testfor(S) is sought

then testing-completed.

MOSTLIKELY:
-- function: binds cached fact with highest certainty to MatchVar

mostlikely(cachedfact) = MatchVar

if mostlikely(recommended-color-CurrentRun) = C and

mostlikely(recommended-body-CurrentRun) = B and

mostlikely(recommended-sweetness-CurrentRun) = S and

display(['I recommend a wine that is ',S,', ',B,'-bodied, and ', C, '.', nl])

then explanation-CurrentRun = wasPrinted.

MULTIVALUED: --
meta-fact, permits multiple 100-cf's; singlevalued is automatic

even single-valued permit multiple cf's if < 100

multivalued(Lvar).

multivalued(wine(COLOR, BODY, SWEETNESS)).

EG: wine(red,medium,medium) = gamay.

NAMEOF:

--

meta-fact, renames a set of Lvars to NewName-N, 1..N set by asknumber.

nameof(OldName, highestNumber) = newName-N.

eg:
goal = child.

multivalued(child).

asknumber(child) = "How many children?".
/* provides N for nameof */

nameof(child,N) = name-N.

cache now shows:

child = name-1 (100%) because you said so.

child = name-2 (100%) because you said so.

child = name-3 (100%) because you said so.

Without nameof(), the Lvars would be named: child-1, child-2, child-3

NOAUTOMATICQUESTION:
--
meta-fact, prevents M1 from asking user

when it can't find a value for a sought Lvar

noautomaticquestion(Lvar).

eg: noautomaticquestion(default-Trait).

noautomaticquestion(wine(COLOR, BODY, SWEETNESS)).

NOCACHE:
--
meta-fact, deletes facts and Lvar values from cache after use,

saves memory, next seek would cause another search

nocache(screen1).

NOLIST:

--
meta-fact, disables Menu-commands: WHY, LIST, & USES for specified Lvar

nolist(Lvar).

nolist(ALL).
/* for entire Knowledge Base
*/

NOT:
-- see proposition

OR:

-- see proposition

ORDERED:
--
function, outputs cached facts in order of certainty.

ordered(Lvar)

eg: if listof(brand-CurrentRun) = [Wine]

and display(['One best wine: ', Wine])

then whatever.

also: (MatchVar, ordered(brand-N) = MatchVar)

eg:

if listof(Brand,ordered(brand-X) = Brand) = [First,Second,Third|REST]

and display('Three best wines: ', First, ', ' Second, ', ', Third, '.'])

then whatever.

POSITIVEINTEGER:
-- meta-proposition, loop-incrementer

if positiveinteger = MatchVar

--
MatchVar = MatchVar + 1

if positiveinteger = LoopVar

/* -- used to increment loop-variable */

and endAtRun-LoopVar

 then endRun.

if positiveinteger = nonvariable
--
true if nonvariable = positive integer

Example-1:

These 4 lines cause M1 to loop . . .

question(word-N) = ['What is ',word-N,'? -- Enter ''.'' when done. '].

loop-1:
if positiveinteger = N

/* this increments N = 1..infinity

*/

and word-N = '.'

/* when this is true, the loop stops
*/

then sentence.

See intro section for more on this example.

The next loop displays word-1 to word-N, previously input by user, and each word's associated wordType, wordType-1 to N.

A sample display line:
"word-3: of = preposition"

loop-3: if positiveinteger = N

/* incrementer

*/

and showResult-N

/* loop stops when this is true

*/

then showedResults.

/* grand program goal, no "-N" here */

This "calls" the loop

show: if word-N = Word

and wordType-N = Type

and display([word-N, ': "',Word,'"\t = ',Type,nl])

and wordType-N = end

/* this signals whether loop should stop */

then showResult-N.

/* this is the loop control variable*/

PREFIX, POSTFIX, INFIX:
--
operators?

Allows separation of partial variable names to make debugging more difficult.

Probably intended for non-programmers.

Eg: postfix miles. -- allows "10 miles" instead of miles(10)

Example from cwine:

Separated variable parts:

rule-1: if begin message = M and

 display(M) and

 begin signal and

 display('\f')

 then begin the consultation.

One word variables:

rule-1: if screen1 = Msg and

 display(Msg) and

 letsGo and

 display('\f')

 then startRun.

PRESUPPOSITION:
--
meta-fact, prevents search for Lvar if proposition is false

presupposition(Lvar) = proposition.

presupposition(sauce) = has sauce.

question(sauce) = 'What kind of sauce does the meal have?'.

PROPOSITIONS:
-- statement with a truth-value

-- a fact without cf part

-- premises are propositions

expr eg:

best-color

--
yes 100cf is assumed

expr = value eg:

best-color = red
--
100cf is assumed

expr cf N

best-color cf 80

expr = value cf N eg:
best-color = red cf 80

And: Prop1 and Prop2 . . .

kb-4: if mainDish = meat

and has-sauce

and sauce = sweet

then bestColor = purple cf 99

and bestColor = white cf 40.

Or: Prop1 or Prop2 . . .

* M1 will continue trying or-terms until 100cf is reached

* OR is not allowed in conclusions

kb-5: if (lights = dim or cranking = sluggish)

and battery = charged

then fault = poor-connection cf 60.

Not:

kb-6: if not(has-sauce) -- true if has-sauce = unknown

or: if (has-sauce=no) -- not true if has-sauce = unknown

And: & OR: red and dry or medium == red and (dry or medium)

QUESTION:
--
meta-fact, gets user answer; MatchVars ok in Lvar and qText

question(Lvar) = questionText.

question(mainDish) = 'Is the main dish meat, fish, or poultry?'

question(loading(SS)) = ['Enter names of ', SS, 'separated by commas.)'].

RULE:
--
if Premise then Conclusion

the main programming mechanism in M1

-- premise: AND is OK here,
OR means you actually have 2 rules

eg: if mainDish = meat

--
conclusion: to get M1's attention, sought-for Lvar must be here

 you can have ONLY ONE Lvar

eg: then bestColor = red cf 80

and bestColor = white cf 40.

--
all together:

if mainDish = meat

and userWantsRed

then bestColor = red.

M1 classifies rules into 4 types:

--
judgmental: if mainDish = meat and userWantsRed then bestColor = red.

--
definition: if X-male and X-single then X-batchelor.

--
procedural: if d = Inum and c = Cnum and d = Dnum

and Inum + (Cnum - Dnum)/2 = ResultNum

then outPut = ResultNum.

--
control:
 if positiveinteger = I

and endAtRun-I

and display('Consultation over.')

 then endRun.

STRING:

Special Chars available inside quotes

newline:
\n

formfeed:
\f

tab:

\t

\:

\\

':

''
-- eg "can''t"

STRINGINDEX:
--
function, tells location of substring in string (0..length)

* if the substring does not occur, the function is false.

if 3 = OccurNum

/* Occurence# 1..N
*/

and stringof(abc) = Substr

/* Substring

*/

and stringof(abcdefabcdefabcdef) = String
/* Target

*/

and stringindex(OccurNum, Substr, String) = Idx
/* can be false*/

and display(['Idx:',Idx,nl])

then goal1.

STRINGJOIN:

--
function, concatenates strings

stringjoin([string1, ...stringN]) = string

eg1:
if stringjoin(['This ','is ','nice.']) = S

then goal2 = S.

eg2:
if stringof(this) = S1

and stringof(is) = S2

and stringof(nice) = S3

and stringjoin([S1,' ',S2,' ',S3,'.']) = S

and display([S,nl])

then goal1.

STRINGLENGTH:
--
function,

stringlength(quotedString) = Len

if stringlength('This is nice.') = Len

/* Len = 13 */

then goal4 = Len.

STRINGOF:
-- function, turns an atom into a string

if stringof(this) = S1

and stringof(is) = S2

then goal1.

if
stringof('This is nice.') = OString

and display(OString)

then goal6 = OString.

SUBSTRING:
--
function, creates substring, startAfter counts 1..N

substring(startAfter, subLength, fullString) = SubString

if
substring(3, 5, 'abcdefghijklmnopqrstuvwxyz') = S0

/* defgh */

and display(S0)

then goal1 = S0.

STRING-TERMOF:

--
did not try

termof('this-is-a-term') = X

/* yields true */

termof('this is a term') = X

/* yields error */

STRUCTURE:
--
seems to be a function for non-numerics, discussed in intro

functor(term1, . . . term15)

eg: dist(paris, newyork)

WHENCACHED:
--
meta-fact, gives a list of actions to do when finding a certain Value

if Value is omitted, ANY value will execute the ActionList

whencached(Lvar = [* Value [* cf CF *] *]) = [ActionList].

for examples, see WHENFOUND

WHENFOUND:
--
meta-fact, same as WHENCACHED but only kicks off with final value

The items on ActionList must be normal propositions in a rule

whenfound(Lvar = [* VAL [* cf CF *]*]) = [ActionList].

whenfound(state = bad) = display('Warning: patient dying.').

whenfound(child = P) = [age(P), sex(P))

whenfound(child = boy) = [debug = yes and display("message here")]

* here display only executes if debug = yes

