David Turner
Computing Laboratory
University of Kent
Canterbury CT2 7NF
ENGLAND
 
Miranda is an advanced functional programming system  which 
runs  under
the  UNIX  operating  system  (*).  
The aim of the Miranda system is to
provide  a  modern  functional  language, 
embedded  in  an  `industrial
quality'  programming  environment.   It 
is now being used at a growing
number of sites for teaching functional programming and as a vehicle
for
the rapid prototyping of software.  The purpose of this short
article is
to give a brief overview of the main features of Miranda.  The
topics we
shall discuss, in order, are:
        Basic ideas
        The Miranda programming
environment
        Guarded equations and block
structure
        Pattern matching
        Currying and higher order
functions
        List comprehensions
        Lazy evaluation and infinite
lists
        Polymorphic strong typing
        User defined types
        Type synonyms
        Abstract data types
        Separate compilation and
linking
        Current implementation status
(*)  Note:  UNIX  is a trademark of AT&T Bell
Laboratories, Miranda is a
     trademark of Research Software Ltd.
Basic Ideas
 The Miranda programming language is purely functional - 
there  are  no
side effects or imperative features of any kind.  A program (actually
we
don't call it a program, we call it  a  "script")  is 
a  collection  of
equations  defining  various  functions and data structures
which we are
interested in computing.  The order in which the equations are
given  is
not  in general significant.  There is for example no obligation
for the
definition of an entity to precede its first use.  Here is a very
simple
example of a Miranda script:
        z = sq x / sq y
        sq n = n * n
        x = a + b
        y = a - b
        a = 10
        b = 5
Notice  the absence of syntactic baggage - Miranda is, by design,
rather
terse.  There are no mandatory type declarations, although 
(see  later)
the  language  is strongly typed.  There are no semicolons
at the end of
definitions - the parsing algorithm makes  intelligent  use 
of  layout.
Note that the notation for function application is simply juxtaposition,
as in "sq x".  In the definition of the sq function,  "n" 
is  a  formal
parameter  -  its  scope  is  limited to the
equation in which it occurs
(whereas the other names introduced above  have  the 
whole  script  for
their scope).
The most commonly used data structure is the list, which in  Miranda 
is
written with square brackets and commas, e.g.:
        week_days = ["Mon","Tue","Wed","Thur","Fri"]
        days = week_days ++ ["Sat","Sun"]
Lists  may be appended by the "++" operator.  Other useful
operations on
lists include infix ":" which prefixes an element  to  the 
front  of  a
list,  "#"  which  takes  the length of a list,
and infix "!" which does
subscripting.  So for example 0:[1,2,3] has the value  [0,1,2,3], 
#days
is 7, and days!0 is "Mon".
There is also an operator "--" which does list subtraction.  For
example
[1,2,3,4,5] -- [2,4] is [1,3,5].
There is a shorthand notation using ".." for lists whose  elements 
form
an arithmetic series.  Here for example are definitions of the
factorial
function, and of a number "result" which is the sum of the  odd 
numbers
between 1 and 100 (sum and product are library functions):
        fac n = product [1..n]
        result = sum [1,3..100]
The  elements  of  a  list  must all be of
the same type.  A sequence of
elements of  mixed  type  is  called  a 
tuple,  and  is  written  using
parentheses instead of square brackets.  Example
        employee = ("Jones",True,False,39)
Tuples  are  analogous to records in Pascal (whereas lists
are analogous
to arrays).  Tuples cannot be subscripted - their elements are
extracted
by pattern matching (see later).
The Miranda Environment
 The  Miranda  system  is  interactive 
and  runs  under  UNIX as a self
contained subsystem.  The  basic  action  is 
to  evaluate  expressions,
supplied  by the user at the terminal, in the environment established
by
the current script.  For example evaluating "z" in the  context 
of  the
first  script  given  above  would  produce
the result "9".
The Miranda compiler works in conjunction with an editor (normally 
this
is "vi" but it can be set to any editor of the users choice) and scripts
are automatically recompiled after edits, and any syntax or type 
errors
signaled  immediately.   The  polymorphic 
type  system  permits a high
proportion of logical errors to be detected at compile time.
There is quite a large library  of  standard  functions.  
There  is  an
online reference manual documenting all aspects of the system. 
There is
a good interface to UNIX, permitting Miranda programs to take data
from,
and  send  data  to,  arbitrary  UNIX 
files, and it is also possible to
invoke Miranda programs directly from the UNIX  shell,  and 
to  combine
them, via UNIX pipes, with processes written in other languages.
Guarded Equations and Block Structure
 An equation can have several alternative right hand sides distinguished
by  "guards" - the guard is written on the right following a comma. 
For
example the greatest common divisor function can be written:
        gcd a b = gcd (a-b) b, if
a>b
               
= gcd a (b-a), if a<b
               
= a, if a=b
The last  guard  in  such  a  series 
of  alternatives  can  be  written
"Otherwise", instead of "If condition", to indicate a
default case(*).
It is also permitted to introduce local definitions on  the 
right  hand
side  of  a  definition,  by  means 
of  a "where" clause.  Consider for
example the following definition of a  function  for 
solving  quadratic
equations (it either fails or returns a list of one or two real roots):
        quadsolve a b c = error "complex
roots",    if delta<0
                       
= [-b/(2*a)],              
if delta=0
                       
= [-b/(2*a) + radix/(2*a),
                          
-b/(2*a) - radix/(2*a)], if delta>0
                         
where
                         
delta = b*b - 4*a*c
                         
radix = sqrt delta
Where  clauses  may  occur  nested, to arbitrary
depth, allowing Miranda
programs to be organized with a nested block structure.  Indentation 
of
inner blocks is compulsory, as layout information is used by the parser.
(*) Note: For compatibility with earlier versions of Miranda
the use  of
the word "if" in guards is optional.
Pattern Matching
 It  is  permitted  to  define  a function
by giving several alternative
equations, distinguished by the use of different patterns in the 
formal
parameters.   This  provides another method of doing
case analysis which
is often more elegant than the use of guards.  We here give some 
simple
examples  of  pattern  matching  on  natural
numbers, lists, and tuples.
Here is (another) definition of the factorial function, and a definition
of Ackermann's function:
        fac 0 = 1
        fac (n+1) = (n+1)*fac n
        ack 0 n = n+1
        ack (m+1) 0 = ack m 1
        ack (m+1) (n+1) = ack m(ack
(m+1) n)
Here  is  a  (naive)  definition  of 
a  function for computing the n'th
Fibonacci number:
        fib 0 = 0
        fib 1 = 1
        fib (n+2) = fib (n+1) +
fib n
Here are some simple examples of functions defined by  pattern 
matching
on lists:
        sum [] = 0
        sum (a:x) = a + sum x
        product [] = 1
        product (a:x) = a * product
x
        reverse [] = []
        reverse (a:x) = reverse
x ++ [a]
Accessing the elements of a tuple is also done by pattern matching. 
For
example the selection functions on 2-tuples can be defined thus
        fst (a,b) = a
        snd (a,b) = b
As final examples  we  give  the  definitions 
of  two  Miranda  library
functions,  take  and  drop, which return the first
n members of a list,
and the rest of the list without the first n members, respectively
        take 0 x = []
        take (n+1) [] = []
        take (n+1) (a:x) = a : take
n x
        drop 0 x = x
        drop (n+1) [] = []
        drop (n+1) (a:x) = drop
n x
Notice that the two functions are defined in such a way  that 
that  the
following identity always holds - "take n x ++ drop n x = x" - including
in the pathological case that the length of x is less than n.
Currying and Higher Order Functions
 Miranda is a fully higher order language - functions  are 
first  class
citizens  and  can be both passed as parameters and returned
as results.
Function application is left associative, so when we write "f x y"
it is
parsed  as  "(f  x)  y", meaning that the result
of applying f to x is a
function, which is then applied to y.   The  reader 
may  test  out  his
understanding of higher order functions by working out what is the
value
of "answer" in the following script:
        answer = twice twice twice
suc 0
        twice f x = f (f x)
        suc x = x + 1
Note that in Miranda every function of two or more arguments is actually
a  higher  order  function.   This  is
very useful as it permits partial
application.  For example "member"  is  a  library 
function  such  that
"member  x a" tests if the list x contains the element a (returning
True
or False as appropriate).  By partially applying member 
we  can  derive
many useful predicates, such as
        vowel = member ['a','e','i','o','u']
        digit = member ['0','1','2','3','4','5','6','7','8','9']
        month = member ["Jan","Feb","Mar","Apr","Jun","Jul","Aug","Sep",
                       
"Oct","Nov","Dec"]
 As  another  example  of higher order programming
consider the function
foldr, defined
        foldr op k [] = k
        foldr op k (a:x) = op a
(foldr op k x)
All the standard list processing functions can be obtained by 
partially
applying foldr.  Examples
        sum = foldr (+) 0
        product = foldr (*) 1
        reverse = foldr postfix
[]
                 
where postfix a x = x ++ [a]
List Comprehensions
 List comprehensions give a concise syntax for a rather general
class of
iterations over lists.  The syntax is adapted from an analogous
notation
used in set theory (called "set comprehension").  A simple example
of  a
list comprehension is:
        [ n*n | n <- [1..100]
]
This is a list containing (in order) the squares of all the numbers
from
1 to 100.  The above expression would be read aloud as "list of
all  n*n
such  that  n  drawn  from the list 1 to 100". 
Note that "n" is a local
variable of the above expression.  The variable-binding construct
to the
right  of  the  bar is called a "generator" - the "<-"
sign denotes that
the variable introduced on its left ranges over all the elements of 
the
list  on its right.  The general form of a list comprehension
in Miranda
is:
        [ body | qualifiers ]
where each qualifier is either a generator, of  the  form 
var<-exp,  or
else a filter, which is a boolean expression used to restrict the ranges
of the variables  introduced  by  the  generators.  
When  two  or  more
qualifiers  are present they are separated by semicolons. 
An example of
a list comprehension with two  generators  is  given 
by  the  following
definition of a function for returning a list of all the permutations
of
a given list,
        perms [] = [[]]
        perms x  = [ a:y |
a <- x; y <- perms (x--[a]) ]
The  use  of a filter is shown by the following definition
of a function
which takes a number and returns a list of all its factors,
        factors n = [ i | i <-
[1..n div 2]; n mod i = 0 ]
List comprehensions often allow remarkable  conciseness  of 
expression.
We   give  two  examples.   Here 
is  a  Miranda  statement  of  Hoare's
"Quicksort" algorithm, as a method of sorting a list,
        sort [] = []
        sort (a:x) = sort [ b |
b <- x; b<=a ]
                    
++ [a] ++
                    
sort [ b | b <- x; b>a ]
Next is a Miranda solution to the eight  queens  problem.  
We  have  to
place  eight  queens  on chess board so that no queen
gives check to any
other.  Since any solution must have exactly one queen in each
column, a
suitable representation for a board is a list of integers giving the
row
number of the queen in each successive column.  In the following 
script
the  function  "queens  n"  returns all safe ways
to place queens on the
first n columns.  A list of all solutions to the eight queens
problem is
therefore obtained by printing the value of (queens 8)
        queens 0 = [[]]
        queens (n+1) = [ q:b | b
<- queens n; q <- [0..7]; safe q b ]
        safe q b = and [ ~checks
q b i | i <- [0..#b-1] ]
        checks q b i = q=b!i \/
abs(q - b!i)=i+1
Lazy Evaluation and Infinite Lists
 Miranda's  evaluation  mechanism  is  "lazy", 
in  the  sense  that  no
subexpression is evaluated until its value is known to be required. 
One
consequence  of  this  is that is possible to define
functions which are
non-strict (meaning that they are capable of returning an answer even
if
one  of  their  arguments  is  undefined).  
For example we can define a
conditional function as follows,
        cond True x y = x
        cond False x y = y
and then use it in such situations as "cond (x=0) 0 (1/x)".
The other main consequence of  lazy  evaluation  is 
that  it  makes  it
possible  to  write  down definitions of infinite data
structures.  Here
are some examples of Miranda definitions of infinite  lists 
(note  that
there  is  a  modified  form of the ".." notation
for endless arithmetic
progressions)
        ones = 1 : ones
        repeat a = x
                  
where x = a : x
        nats = [0..]
        odds = [1,3..]
        squares = [ n*n | n <-
[0..] ]
        perfects = [ n | n <-
[1..]; sum(factors n) = n ]
        primes = sieve [ 2.. ]
                
where
                
sieve (p:x) = p : sieve [ n | n <- x; n mod p > 0 ]
One interesting application of infinite lists is to act as lookup tables
for  caching  the  values  of a function. 
For example our earlier naive
definition  of  "fib"  can  be  improved 
from  exponential  to   linear
complexity by changing the recursion to use a lookup table, thus
        fib 0 = 1
        fib 1 = 1
        fib (n+2) = flist!(n+1)
+ flist!n
                   
where
                   
flist = map fib [ 0.. ]
Another  important use of infinite lists is that they enable us
to write
functional programs representing networks  of  communicating 
processes.
Consider  for  example the Hamming numbers problem - we have
to print in
ascending order all numbers  of  the  form  2^a*3^b*5^c, 
for  a,b,c>=0.
There  is  a  nice  solution  to  this
problem in terms of communicating
processes, which can be expressed in Miranda as follows
        hamming = 1 : merge (f 2)
(merge (f 3) (f 5))
                 
where
                 
f a = [ n*a | n <- hamming ]
                 
merge (a:x) (b:y) = a : merge x (b:y), if a<b
                                   
= b : merge (a:x) y, if a>b
                                   
= a : merge x y,     otherwise
Polymorphic Strong Typing
 Miranda is  strongly  typed.   That 
is,  every  expression  and  every
subexpression  has a type, which can be deduced at compile time,
and any
inconsistency in the type structure of a script  results 
in  a  compile
time  error  message.   We here briefly summarize
Miranda's notation for
its types.
There are three primitive types, called num, bool, and char.  
The  type
num  comprises  integer  and  floating  point 
numbers  (the distinction
between integers and floating point numbers is handled  at 
run  time  -
this is not regarded as being a type distinction).  There are
two values
of type bool, called True and False.  The type char comprises
the  ascii
character  set - character constants are written in single quotes,
using
C escape conventions, e.g.  'a', '$', '\n' etc.
If T is type, then [T] is the type of lists whose elements are 
of  type
T.   For example [[1,2],[2,3],[4,5]] is of type [[num]],
that is it is a
list of lists of numbers.  String constants are of type [char],
in  fact
a  string  such  as  "hello"  is  simply 
a  shorthand  way  of  writing
['h','e','l','l','o'].
If T1 to Tn are types, then (T1,...,Tn)  is  the  type 
of  tuples  with
objects  of these types as components.  For example (True,"hello",36)
is
of type (bool,[char],num).
If T1 and T2 are types, then T1->T2 is  the  type  of 
a  function  with
arguments  in  T1 and results in T2.  For example the
function sum is of
type [num]->num.  The function quadsolve,  given  earlier, 
is  of  type
num->num->num->[num].  Note that "->" is right associative.
Miranda  scripts can include type declarations.  These are
written using
"::" to mean is of type.  Example
        sq :: num -> num
        sq n = n * n
The type declaration is not necessary, however.  The compiler
is  always
able  to  deduce  the  type of an identifier from
its defining equation.
Miranda scripts often contain type declarations as these are useful 
for
documentation  (and  they  provide an extra check, since
the typechecker
will complain if the declared type is  inconsistent  with 
the  inferred
one).
Types can be polymorphic, in the sense of Milner [Milner 78].  
This  is
indicated  by  using  the symbols * ** *** etc as an
alphabet of generic
type variables.  For example, the  identity  function, 
defined  in  the
Miranda library as
        id x = x
has the following type
        id :: * -> *
this  means that the identity function has many types.  Namely
all those
which can be obtained by substituting an arbitrary type for the 
generic
type  variable, eg "num->num", "bool->bool", "(*->**) -> (*->**)"
and so
on.
We  illustrate  the  Miranda type system by giving types
for some of the
functions so far defined in this article
        fac :: num -> num
        ack :: num -> num -> num
        sum :: [num] -> num
        month :: [char] -> bool
        reverse :: [*] -> [*]
        fst :: (*,**) -> *
        snd :: (*,**) -> **
        foldr :: (*->**->**) ->
** -> [*] -> **
        perms :: [*] -> [[*]]
User Defined Types
 The user may introduce new types.  This  is  done 
by  an  equation  in
"::=".   For  example  a  type  of 
labeled  binary trees (with numeric
labels) would be introduced as follows,
        tree ::= Nilt | Node num
tree tree
This introduces three new identifiers - "tree" which is the name of 
the
type,  and "Nilt" and "Node" which are the constructors for trees. 
Nilt
is an atomic constructor, while Node takes three arguments, of the
types
shown. Here is an example of a tree built using these constructors
        t1 = Node 7 (Node 3 Nilt
Nilt) (Node 4 Nilt Nilt)
To analyze an object of user defined type, we use pattern matching. 
For
example here is a definition of a function for taking the  mirror 
image
of a tree
        mirror Nilt = Nilt
        mirror (Node a x y) = Node
a (mirror y) (mirror x)
User defined types can be polymorphic - this is shown by introducing
one
or more generic type variables as parameters of the "::=" equation. 
For
example  we  can  generalize  the  definition
of tree to allow arbitrary
labels, thus
        tree * ::= Nilt | Node *
(tree *) (tree *)
this introduces a family of tree types, including tree num,  tree 
bool,
tree(char->char), and so on.
The  types introduced by "::=" definitions are called "algebraic
types".
Algebraic  types  are  a  very  general 
idea.   They   include   scalar
enumeration types, eg
        color ::= Red | Orange |
Yellow | Green | Blue | Indigo | Violet
and also give us a way to do union types, for example
        bool_or_num ::= Left bool
| Right num
It is interesting to note that all the basic data types of Miranda could
be defined from first principles, using "::="  equations.  
For  example
here are type definitions for bool, (natural) numbers and lists,
        bool ::= True | False
        nat ::= Zero | Suc nat
        list * ::= Nil | Cons *
(list *)
Having  types such as "num" built in is done for reasons of efficiency
-
it isn't logically necessary.
It is also possible to associate "laws"  with  the  constructors 
of  an
algebraic  type,  which  are  applied  whenever
an object of the type is
built.  For example we can associate laws with the Node 
constructor  of
the  tree  type  above,  so  that  trees 
are  always balanced.  We omit
discussion of  this  feature  of  Miranda 
here  for  lack  of  space  -
interested  readers  will  find more details in the
references [Thompson
86, Turner 85].
Type Synonyms
 The Miranda programmer can introduce a new name for an already
existing
type.   We  use  "=="  for  these 
definitions, to distinguish them from
ordinary value definitions.  Examples
        string == [char]
        matrix == [[num]]
Type synonyms are entirely transparent to the typechecker - it 
is  best
to  think  of them as macros.  It is also possible to
introduce synonyms
for families of types.  This is done by using generic  type 
symbols  as
formal parameters, as in
        array * == [[*]]
so now eg `array num' is the same type as `matrix'.
Abstract Data Types
 In  addition  to concrete types, introduced by "::="
or "==" equations,
Miranda permits the definition of abstract types,  whose 
implementation
is  "hidden"  from  the  rest of the program. 
To show how this works we
give the standard example of defining stack as  an  abstract 
data  type
(here based on lists):
        abstype stack *
        with  empty
:: stack *
             
isempty :: stack * -> bool
             
push :: * -> stack * -> stack *
             
pop :: stack * -> stack *
             
top :: stack * -> *
        stack * == [*]
        empty = []
        isempty x = (x=[])
        push a x = (a:x)
        pop (a:x) = x
        top (a:x) = a
We  see  that  the  definition  of an abstract
data type consists of two
parts.  First a declaration of the form "abstype ...  with 
...",  where
the  names following the "with" are called the signature
of the abstract
data type.  These names are the interface between the abstract
data type
and  the  rest  of the program.  Then a set of
equations giving bindings
for the names introduced in the abstype declaration.  These 
are  called
the implementation equations.
The  type  abstraction  is  enforced  by the
typechecker.  The mechanism
works as follows.  When typechecking the  implementation 
equations  the
abstract type and its representation are treated as being the same
type.
In the whole of the rest  of  the  script  the 
abstract  type  and  its
representation  are  treated  as  two  separate
and completely unrelated
types.   This  is  somewhat  different 
from  the  usual  mechanism  for
implementing abstract data types, but has a number of advantages. 
It is
discussed at somewhat greater length in [Turner 85].
Separate Compilation and Linking
 The basic mechanisms for separate compilation and linking are
extremely
simple.   Any  Miranda  script can contain one
or more directives of the
form
        %include "pathname"
where "pathname" is the name of another Miranda script file (which
might
itself contain include directives, and so on recursively - cycles in
the
include structure are not permitted however).  The visibility 
of  names
to  an  including  script  is  controlled
by a directive in the included
script, of the form
        %export names
It is permitted to export types as well as values.  It is not 
permitted
to export a value to a place where its type is unknown, so if you export
an object of a locally defined type, the typename must be exported
also.
Exporting  the  name  of  a  "::="  type 
automatically  exports all its
constructors.  If a script does not contain an  export 
directive,  then
the  default  is  that  all the names (and typenames)
it defines will be
exported (but not those which it acquired by %include statements).
It is also permitted to write a paramaterized script,  in 
which
certain
names  and/or  typenames  are declared as "free". 
An example is that we
might wish to write a package for doing matrix algebra  without 
knowing
what the type of the matrix elements are going to be.  A header
for such
a package could look like this:
        %free { element :: type
               
zero, unit :: element
               
mult, add, subtract, divide :: element->element->element
             
}
        %export matmult determinant
eigenvalues eigenvectors ...
        || here  would 
follow  definitions  of  matmult,   determinant,
        || eigenvalues,  etc.  
in  terms  of the free identifiers zero,
        || unit, mult, add, subtract,
divide
In the using script, the corresponding %include statement  must 
give  a
set  of  bindings  for  the  free variables
of the included script.  For
example here is an instantiation of the matrix package  sketched 
above,
with real numbers as the chosen element type:
        %include "matrix_pack"
                
{ element == num; zero = 0; unit = 1
                  
mult = *; add = +; subtract = -; divide = /
                
}
The three directives %include, %export, and  %free  provide 
the  Miranda
programmer  with  a  flexible  and type secure
mechanism for structuring
larger pieces of software from libraries of smaller components.
Separate  compilation  is  administered without user
intervention.  Each
file containing a Miranda script is shadowed  by  an 
object  code  file
created by the system, and object code files are automatically recreated
and relinked if they become out of date with  respect  to 
any  relevant
source.   (This  behavior is strongly analogous to that
achieved by the
UNIX program "make", except that here the user is not required to 
write
a  makefile  - the necessary dependency information is inferred
from the
%include directives in the Miranda source.)
Current Implementation Status
 An implementation of  Miranda  is  available 
for  VAX,  SUN-3,  SUN-4,
DECstation,  MIPS,  Apollo,  and several other machines
running Berkeley
UNIX, and also for the  HP9000  series  under 
system  5.   This  is  an
interpretive  implementation which works by compiling Miranda
scripts to
an intermediate code based on combinators.  It is currently 
running  at
400  sites  (as of January 1990).  Licensing information
can be obtained
from the net address
  (INTERNET:) "mira-request@ukc.ac.uk"
  (UUCP:) "mcvax!ukc!mira-request" or by real mail from
        Research Software Ltd
        23 St Augustines Road
        Canterbury
        Kent CT1 1XP
        England
        (phone +44 227 471844)
Ports to some other machines are planned in the near future.  Also
under
study  (to  appear on a somewhat longer timescale) is the
possibility of
native code compilers for Miranda on a number of machines, to provide 
a
much faster implementation.
REFERENCES
Milner,  R.  "A  Theory  of Type Polymorphism in
Programming" Journal of
Computer and System Sciences, vol 17, 1978.
Thompson, S.J.  "Laws in  Miranda"  Proceedings 
4th  ACM  International
Conference on LISP and Functional Programming, Boston Mass, August
1986.
Turner,   D.A.    "Miranda:   A  
non-strict  functional  language  with
polymorphic  types"  Proceedings  IFIP   International  
Conference   on
Functional   Programming  Languages  and 
Computer  Architecture,  Nancy
France, September 1985 (Springer Lecture Notes in Computer Science, 
vol
201).
[Note - this overview of Miranda  first  appeared  in 
SIGPLAN  Notices,
December 1986.  It has here been revised very slightly to bring
it up to
date.]