Chrispen, Kutcher, and Nugent

Cis 375 Dr. Maxim

Risk Table Builder

Introduction

Goals and Objectives

The primary goal of the system is to make a risk assessment table for the user with a simple and easy to use interface. The risk table will be outputted to the screen and to a file named RTable.dat. The output to the screen will not be editable but the output to the data file is. Secondary goals include maintaining a database of project risks, risk management techniques to combat the risks, files that give example risk management plans, and sample risk management, monitoring, and mitigating files.

Objectives of the software include providing an error free Ms-dos environment, easy to use web environment, easy to use and follow Ms-dos environment, and a neat and concise output. Secondary objectives include making the web environment easy to use and fast to load, ease of navigation in the Internet environment, provide advanced search capabilities for the user to locate specific risks of interests online, fast and memory efficient Ms-dos environment, and a Ms-dos environment that minimizes the user having to type.

Statement of Scope

Inputs

· The user will have a choice of either entering a number (key) that corresponds to a risk or typing in a risk(s).

· Enter your risk factor please:

· Enter risk number (1-300) from the web risk tables or (-1) to quit:

· If in part 2 the user inters an incorrect value they are prompted again for input.

· The risk number must be a number from (1 to 300)

· Please enter a new risk number:

· The user is prompted for the category the risk belongs to when they type their own risks in.

· Enter the 2-letter category your risk belongs to please:

· In both cases the user is prompted for the probability that the risk will occur.

· Enter the probability that the risk will occur (1-99):

· In both cases if the user enters a probability not between 0 and 99 they are prompted to input a new probability.

· Please enter a probability between 1 and 99:

· In both cases the user is asked to input the impact of the risk if the risk does occur.

· Enter the impact that the risk will have

 1 for Catastrophic, 2 for Critical,

 3 for Marginal, 4 for Negligible:

· In both cases if the user inputs an impact that is less than 1 or greater than 4 they are prompted to reenter the impact value.

· Enter the impact that the risk will have

 1 for Catastrophic, 2 for Critical,

 3 for Marginal, 4 for Negligible:

· The user is prompted to see if they want to continue adding risks to their table.

· Would you like to enter another risk (y/n):

· Enter risk number (1-300) from the web risk tables (-1) to quit:

· The user is prompted to see if they want to return to the initial menu.

· Back to the initial menu (y/n)?

Output

The output to the screen is the same as the output to a file, with the exception that the screen is not editable and the file is.

Key
Risk

1. Personnel shortfalls.

2. Developing the wrong user interface.

3. Real-time performance shortfalls.

4. Straining computer-science capabilities.

5. Gold plating.

6. Shortfalls in externally performed tasks.

7. Unrealistic schedules and budgets.

Risk table

Key

Category
Probability
Impact

RMMM

	(1)
	SS
	70%
	1

	(3)
	TI
	62%
	2

	(2)
	CC
	55%
	2

	(7)
	BI
	35%
	2

	(5)
	PS
	59%
	3

	(6)
	PD
	33%
	3

	(4)
	SS
	44%
	4

Impact(s)

1 (Catastrophic
2 (Critical

3 (Marginal

4 (Negligible

Processing Functionality

[image: image178.png]
Key (the key associates the risk the user picked from the lists of risks online and retrieves the corresponding risk and category from our database[image: image1.wmf]

Main

MakeDb

Insert

Level 1

Level 2

Switch

RiskFromDb

Insert_User

Print

RetrieveRisk

Constructor

output

Insert InDb

Sort

AtEnd

Level 3

Advance

. The key functionality has many purposes including ease of use, help first time users, and help experienced users identify all possible risks. The user enters the key found from the lists of risks and the program retrieves the corresponding risk and category from the database and inserts into the users list.

Probability (the user has to enter the probability that a risk will in fact occur; this probability is based largely on the users experience.

Category (if the user chooses to type in their own risks then the user will be prompted to enter a category for their risk. The possible categories are listed for the user or they may choose their own category.

Impact (impact has to be entered by the user and again is largely based on past experience. The program then sorts all the risks according to impact and then again sorts by probability so that the output has the risks with the highest probability and the worst impact at the top.

Software Context

To make the program available commercially we would have to add more exciting design features. The program would also have to be made in a windows environment or be web enabled instead of using an Ms-dos environment. Some of the added features would be remembering old users, remembering old user data, offering risk mitigation options for selected risks, the ability to add your own risks to the systems database, and the ability to print files and databases.

Other upgrades or extensions include software engineering tools like calculators, LOC estimators, function point estimators, etc. The complete package would be available to companies as both an online entity and as a windows program. Companies could also pick and choose which features they would want and buy them individually instead of buying the complete package. The company will also maintain the complete system online where users can pay a small monthly fee and use our companies systems.

We will install the software on corporate servers or host the system on our servers for companies without their own servers. The documentation included with all packages includes all user error codes and how to use the system interface. A complete guide for the system administrator on how to use the system is also included. Including a step-by-step set of instructions on how to change the user interface and system requirements.

Major Constraints

1. Testing client server architectures (performing system tests on as many different system architectures as possible so that the system can be sold to as many companies as possible.

2. Test documents and help facilities (the range, accuracy, source, and frequency of use of the help files. Therefore, creations of a test plan and help facilities for different system is a challenge.

3. Busy server (max number of surfers on the system at any one time (how many surfers can use the system at the same time without impacting performance.

4. Numbers of people who can use the search engine at the same time (how many surfers can use the search engine without impacting system performance. Can the corporate system support multiple searches at the same time?

5. Documentations training (during the training of business network administrators can the documentation system be adequately explained and shown how to use, to prevent multiple training sessions.

6. Establishment of a logic based test plan (can a logic based test plan be developed that adequately tests the system logic that covers all the different types of code used in the system? Also can a logic based test plan be developed that covers the different types of servers and different software packages that might be used with the system.

7. The size/length of the risk (the system will only support risks with a length of 320 characters or less. If the user tries to enter a longer risk the system will cut off the end of the risk.

[image: image17.wmf]

6

b

[image: image18.wmf]

6

b

[image: image19.wmf]

6

b

[image: image20.wmf]

6

b

[image: image21.wmf]

6

b

[image: image22.wmf]

6

b

[image: image23.wmf]

6

b

[image: image24.wmf]

6

b

[image: image25.wmf]

6

b

[image: image26.wmf]

6

b

Each node has 5 data fields and a pointer to the next node.

[image: image27.wmf]

6

b

[image: image28.wmf]

6

b

The top picture shows the basic structure of the link list, which is a node. The node is made up of two parts data and a pointer to the next node. The pointer to the next node is called Successor and will either point to Null if there are no more nodes or the next node if there is one. The constructor sets the pointers Head, Prev, Cursor, and Rear to NULL initially. When the first node is added Head will point to it, Prev is pointed to NULL, Cursor is set equal to Head and rear is set equal to Head also. When the next node is added head is then pointed at the new node Cursor is set equal to Head, which implies that it points to the same place. Prev is still pointing to NULL and Rear is set equal to the first node.

struct ListElement

{

[image: image29.wmf]

6

b

 string Risk;

[image: image30.wmf]

6

b

 string Category;

 int Probability;

 int Impact;

 int Key;

[image: image31.wmf]

6

b

 ListElement *Successor;

};
The node has five data fields and one pointer as we discussed above the pointer is set equal to the next node. The five data fields are Risk, Category, Probability, Impact, and key. The field risk is a string, which implies that it holds characters and words of an indeterminate length. The field Risk will hold the input from the user. Category is also a string and holds the category of the Risk as inputted by the user or retrieved from the systems database. The field probability holds a integer value that is an integer number the user must assign stating the probability that the risk will occur. The field impact is also a integer and holds the users value of the impact that they think the risk will have. The last field key is an integer and is used to format the output and allow the user to access a risk from the systems database.

The link list itself is made up of a number of different fields and functions the fields we described in the section above.

class LinkList

{

 protected:

 ListElement *Head, *Cursor, *Prev, *Rear;

 int Size;

 public:

 LinkList();

 ~LinkList();

 int IsEmpty();

 void InsertFromUser(LinkList &k);

 void InitCursor();

 bool AtEnd();

 void print();

 void Advance();

 void RiskInputFromDB(LinkList &k);

 void Insert(string risk, int key, string category);

void sort();

void output();

void InsertInOrder(int key, string risk, string category,

 int probability, int impact);

 void RetrieveRisk(string &risk, int key, //output - data retrieved

 string &category, bool &Success);

};
Head, Prev, Rear, and Cursor are pointers that allow the system to iterate the link list. The field size, which is an integer and allows the system to keep track of the size of the link list the field size is incremented upon insertion and decremented upon deletion.

1. LinkList(); (the constructor which initializes all the linklist member pointers.

Pseudo code

a. Set all member pointers to NULL Prev, Head, Rear, and Cursor.

b. Set size to zero.

 Actual code

LinkList::LinkList()

//Default constructor.

{

 Head = NULL;

 Prev = NULL;

 Cursor = NULL;

 Rear = NULL;

 Size = 0;

}

2. ~LinkList(); (returns memory back to the heap and resets the size to zero.

Pseudo code

a. Set all nodes to null and return the memory back to the system.

b. Set size equal to zero.

c. Set Prev. equal to Null.

d. Create a pointer to a node and point it to the Head pointer increment the head pointer to the next node and delete the temp pointer continue until head equals NULL.

Actual code

LinkList::~LinkList()

//Default destructor.

{

 ListElement* OldHead;

 //walk down list and return nodes to heap

 while(Head != NULL)

 {

 OldHead = Head;

 Head = Head->Successor;

 delete(OldHead);

 }

 Prev = NULL;

 Size = 0;

}

3. IsEmpty() (is used to see if the list is empty used in the function print to make sure there is a list to print.

Pseudo code

a. Returns true if the list is empty

b. Returns (size = = 0) if size is equal to zero then the statement is true otherwise it is false.

Actual code

bool LinkList::IsEmpty()

//Returns True is list is empty; otherwise returns False.

{

 return(Size == 0);

}

4. InsertInOrder((int key, string risk, string category, int probability, int impact) (is used to make the users database. The function itself has four parameters and these correspond to the data that the user has inputted into the system. The first if () condition checks to see if there is an existing list, if not then it makes the first node. The else condition just adds a node to the list and sets the pointers to the correct positions. The last part of the functions sets the data field of the node equal to the parameters that the user has passed in, increases the size field, and sets Rear id the new node was at the end.

Pseudo code

a. Create a new node and assert that memory was set aside.

b. Fill the node with data from parameter list.

c. Check to see if this is the first node and if so assign Head to point to it and assign the node(Successor to NULL. Or check the new nodes data verses the first nodes data if the new node has a larger value then make it the first node and point node(Successor to Head and Head to new node.

d. Else iterate the list to find the correct position to insert the node. Once the correct position has been found set the nodes(Successor to temp(Successor and temp(Successor equal to the node.
e. Increment size.
f. Check to see if the node was inserted at the end of the list and if so set Rear equal to the node.
Actual code

void LinkList::InsertInOrder(int key, string risk, string category,

int probability, int impact)

{

// inserts elements in process time order

ListElement *start = new ListElement;

 assert(start);

start->Key = key;

start->Risk = risk;

start->Category = category;

start->Impact = impact;

start->Probability = probability;

start->Successor = NULL;

if (Head == NULL || Head->Probability < start->Probability)

{

start->Successor = Head;

Head = start;

Cursor = Head;

}

else

{

ListElement *Current = Head;

 while(Current->Successor != NULL &&

Current->Successor->Probability > start->Probability)

{

Current = Current->Successor;

}

start->Successor = Current->Successor;

Current->Successor = start;

}//end of else

Size++;

if(start->Successor == NULL)

Rear = start;

}// end of function

5. InsertFromUser(LinkList &k); (this function queries the user for information that will be included in their database of risks. The function has several built in safety functions to prevent the user from entering erroneous data. the function also calls the function InsertInDB () to insert the data it has gathered into the database.

Pseudo code

a. Pass in the link list by reference that comprises the users database.

b. Clear the screen

c. Interact with the user to get their risk input. Use the gets function to store the risk in a character array and then set a string variable equal to the array to store the risk in a string.

d. Output a list of possible categories for the user to chose from and receive their category input.

e. Interact with the user for the risks probability and the do an error check to make sure the probability is within the guidelines of 1 to 99 percent.

f. Interact with the user to receive their impact input and perform error checking to make sure it is with the guidelines of 1 to 4

g. Insert the above data risk, category, probability, and impact into a users database.

h. Increment key.

Actual code
void LinkList::InsertFromUser(LinkList &k)

{

char input[320];

 string risk = " ", category = " ";

 int probability, impact;

 clrscr();

 cout << "Enter your risk factor please: ";

 gets(input);

 risk = input;

 cout << endl;

 cout << "(SS) Staff size and experience (BI) Business impact" << endl;

 cout << "(DE) Development environment (PS) Product size" << endl;

 cout << "(CC) Customer characteristics (PD) Process definition" <<endl;

 cout << "(TB) Technology to be built (TI) Technical issues" << endl;

 cout << "\nEnter the 2 letter category your risk belongs to please: ";

 cin >> category;

 cout << "\nEnter the probability that the risk will occur(1-99): ";

 cin >> probability;

 if(probability < 1 || probability > 99)

while(probability < 1 || probability > 99)

{

 clrscr();

 cout << "\nPlease enter a probabilty between 1 and 99: ";

 cin >> probability;

 }

 cout << "\nEnter the impact that the risk will have";

 cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

 cout << " 4 for Negligible: ";

 cin >> impact;

 if(impact < 1 || impact > 4)

while(impact < 1 || impact > 4)

{

 clrscr();

 cout << "\nEnter the impact that the risk will have please: ";

cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

cout << "4 for Negligible: ";

cin >> impact;

 }

 k.InsertInDB(x, risk, category, probability,impact);

 x++;

 }

6.
RetrieveRisk (is used in two different ways, it retrieves a risk from the system database to be inserted into the users database and it is pivotal in error checking the users input. The user inputs a number (key) and retrieve returns the risk and the system then outputs the risk to the screen to make sure that it is the correct risk.

Pseudo code

a. Pass in four variable, by reference string risk, string category, and boolean Success. Pass by value the int key variable.

b. Check to make sure that there is a list. If there isn’t a list set a boolean variable to false. To check that there is a list do a boolean check on Current to make sure it exists.

c. Iterate the list until the risk key is found using the functions AtEnd() and Advance(), while(!this-> AtEnd()) this-Advance() while iterating the list check each node against the key until the key is found. If the key can not be found set the boolean variable equal to false. If the risk key was found set the boolean variable to true and set the parameter risk equal to the risk that corresponds with the key.

d. Set the category variable passed in equal to the category that corresponds to the node that key points to.

Actual code
void LinkList::RetrieveRisk(string &risk, int key,

 string &category, bool &Success)

//Retrieves linked list element pointed to by Cursor.

//Pre : Linked list is initialized.

//Post: Returns through risk the list element pointed to by

// Cursor and sets Success to True or sets Success to

// False if Cursor is NULL.

{

if(Cursor == NULL)

Success = false;

else

{

 while(! this->AtEnd())

{

 if(Cursor->Key == key)

{

risk = Cursor->Risk;

category = Cursor->Category;

Success = true;

return;

}

 this->Advance();

}

}

Success = false;

 }

7. InitCursor (sets the pointer Cursor to the first node in the list (Head) and sets the pointer Prev equal to NULL.

Pseudo code

a. Set Cursor equal to Head.

b. Set Prev equal to NULL.

Actual code

void LinkList::InitCursor()

//Sets Cursor to point to first list element.

 //Pre : List is defined and non-empty.

//Post: Cursor set to first list element and Prev set to NULL,

// since first list element has no predecessor.

{

 Cursor = Head;

Prev = NULL;

}
8. AtEnd() (is a function that returns a boolean value. AtEnd() returns true if there is no list or if Cursor is pointing at the last node of the list. Otherwise the function returns true.

Pseudo code

a. create a bool or integer variable.

b. Check to see if there is a list by verifying Cursor is not equal to NULL if it is set the boolean variable equal to true..

c. Else check to see that Cursor(Successor is not equal to null if it is set the boolean variable equal to NULL.

d. Else set the boolean variable equal to false.

e. Return the boolean variable.

Actual code

bool LinkList::AtEnd()

//Returns True if Cursor is NULL or is pointing to the last

//list element; otherwise returns False.

{

 bool EndList;

if(Cursor == NULL) //empty list

EndList = true;

 else if (Cursor->Successor == NULL)

EndList = true;

 else

 EndList = false;

 return(EndList);

 }
9. Advance (advances the cursor to the next node in the list and saves the last cursor value.

Pseudo code

a. Check to make sure there is a list by checking to that Cursor is not equal to NULL.

b. If there is a list set the pointer Prev equal to Cursor to save the last Cursor position and increment the pointer Cursor by setting it equal to Cursor(Successor.

Actual code

void LinkList::Advance()

//Advances Cursor to next list element.

//Pre : Object initialized.

//Post: Cursor set to next list element, Prev points to

// former Cursor position.

{

if(Cursor != NULL)

{

Prev = Cursor; //save Cursor value

Cursor = Cursor->Successor; //advance Cursor position

}

}
10. Print (sends the users database to the screen and any other information the user may need to understand the data.

Pseudo code

a. Create a pointer to be used in iterating the users database and set equal to the pointer Head.

b. Clear the screen and format the table to be outputted.

c. Use the above pointer to iterate the list using a while loop. Inside the while loop output each nodes key and risk data fields with a tab space in-between them then line feed to the next line and increment the pointer to the next node by using node(Successor.

d. Reset the temporary pointer to equal Head again and create some space for the next part of the table.

e. Create a header for the table that includes all four fields of a node; risk, category, impact, and probability and RMMM with a tab between them.

f. Create a while loop that will traverse the list and print out each of the above four fields for each node.

g. Print out a index that shows what each abbreviation in the impact column stands for. I.e. "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n(4) - Negligible";

h. Print a disclaimer stating what the last column RMMM stands for.

i. Print out a statement that tells the user that a editable file with the name rtable is also produced and is located in the same file directory where they installed the software.

Actual code

void LinkList::print()

{

ListElement *start = Head;

clrscr();

cout << " Key\tRisk\n";

cout << " --- ---";

cout << "----------\n";

while(start != NULL)

{

cout << " " << start->Key << "\t" << start->Risk << endl << endl;

start = start->Successor;

}

 start = Head;

 cout << endl << endl<< endl;

 cout << " Key\tCategory\tImpact\tProbability\tRMMM\n";

 cout << " ---\n";

 while(start != NULL){

 cout << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

 cout << start->Impact << "\t " << start->Probability << endl;

 start = start->Successor;

 }

 cout << endl << "Categories for impacts\n";

 cout << "----------------------\n";

 cout << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n(4) - Negligible";

 cout << endl << endl << endl;

 cout << "RMMM - Risk Monitoring, Management, and Mitigation \n";

 cout << "Place an x in that column if you think the risk needs to be monitored";

 cout << “An editable output file with the name Rtable can be found\n”;

cout <<” in the same directory as where you installed this software”;}

11. Output (sends the users database to a editable file named Rtable.txt and any other information the user may need to understand the data.

Pseudo code

a. Create a pointer to be used in iterating the users database and set equal to the pointer Head. Create a ofstream variable and use the variable to create and open a text file named RTable.

b. Clear the screen and format the table to be outputted.

c. Use the above pointer to iterate the list using a while loop. Inside the while loop output each nodes key and risk data fields with a tab space in-between them then line feed to the next line and increment the pointer to the next node by using node(Successor.

d. Reset the temporary pointer to equal Head again and create some space for the next part of the table.

e. Create a header for the table that includes all four fields of a node; risk, category, impact, and probability and RMMM with a tab between them.

f. Create a while loop that will traverse the list and print out each of the above four fields for each node.

g. Print out a index that shows what each abbreviation in the impact column stands for. I.e. "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n(4) - Negligible";

h. Print a disclaimer stating what the last column RMMM stands for.

i. Print out a statement that tells the user that a editable file with the name rtable is also produced and is located in the same file directory where they installed the software.

Actual code

void LinkList::output()

{

ofstream outData;

outData.open("RTable.txt");

ListElement *start = Head;

outData << " Key\tRisk\n";

outData<< " --";

outData << "----------\n";

while(start != NULL)

{

outData << " " << start->Key << "\t" << start->Risk << endl<<endl;

start = start->Successor;

}

start = Head;

outData << endl << endl<< endl;

outData << " Key\tCategory\tImpact\tProbability\t\tRMMM\n";

outData << " ---\n";

while(start != NULL)

{

outData << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

outData << start->Impact << "\t\t " << start->Probability << endl;

start = start->Successor;

}

outData << endl << "Categories for impacts\n";

outData << "----------------------\n";

outData << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n";

outData << "(4) - Negligible";

outData << endl << endl << endl;

outData << "RMMM - Risk Monitoring, Management, and Mitigation \n";

outData << "Place an x in that column if you think the risk needs";

outData << " to be monitored";

}

12. Sort (sorts the users database by risk impacts the impacts are sorted using a bubble sort. We used a bubble sort for two reasons; first simplicity of use and design and second the list is small so there should be no great deal of time involved.

Pseudo code

a. Create a pointer to a new node and then assert that memory was set aside for the new node.

b. Create a bubble sort with the outside loop containing a pointer to a node initialized to the Head pointer. Iterate the loop until the pointer is equal to NULL by using the statement ptr = ptr(Successor. This step is all inside the outer for loop. for(ListElement *start = Head; start->Successor != NULL; start = start->Successor)

c. The inner for loop is also a pointer to a node. The pointer is initialized to the outer for loops initial pointer values Successor.(ListElement(Traverse = outerPtr(Successor). Iterate the inner for loop until the ptr is equal to NULL using the statement ptr = ptr(Successor for(ListElement *traverse = start->Successor; traverse != NULL; traverse = traverse->Successor)

ListElement *start ;

ListElement *traverse;

for(start = Head; start->Successor != NULL;start = start->Successor)

for(traverse = start->Successor; traverse != NULL;traverse = traverse->Successor)
d. Upon each iteration of the inner for loop perform a boolean check to see if the node that traverse points to has a smaller impact than the node that start points to.

e. If the above boolean statement is true assign all four data fields (risk, traverse, impact, and probability) of the node pointed to by temp equal to the same fields in the node pointed to by traverse.

f. Then set the fields pointed to by traverse equal to the fields pointed to by start.

g. Then set the fields pointed to by start equal to the fields pointed to by the temporary node.

[image: image32.wmf]

6

b

[image: image33.wmf]

6

b

[image: image34.wmf]

6

b

[image: image35.wmf]

6

b

[image: image36.wmf]

6

b

[image: image37.wmf]

6

b

[image: image38.wmf]

6

b

[image: image39.wmf]

6

b

[image: image40.wmf]

6

b

[image: image41.wmf]

6

b

[image: image42.wmf]

6

b

[image: image43.wmf]

6

b

[image: image44.wmf]

6

b

[image: image45.wmf]

6

b

[image: image46.wmf]

6

b

[image: image47.wmf]

6

b

[image: image48.wmf]

6

b

[image: image49.wmf]

6

b

[image: image50.wmf]

6

b

[image: image51.wmf]

6

b

[image: image52.wmf]

6

b

[image: image53.wmf]

6

b

[image: image54.wmf]

6

b

[image: image55.wmf]

6

b

[image: image56.wmf]

6

b

[image: image57.wmf]

6

b

[image: image58.wmf]

6

b

[image: image59.wmf]

6

b

[image: image60.wmf]

6

b

[image: image61.wmf]

6

b

[image: image62.wmf]

6

b

[image: image63.wmf]

6

b

[image: image64.wmf]

6

b

[image: image65.wmf]

6

b

[image: image66.wmf]

6

b

[image: image67.wmf]

6

b

[image: image68.wmf]

6

b

[image: image69.wmf]

6

b

[image: image70.wmf]

6

b

[image: image71.wmf]

6

b

[image: image72.wmf]

6

b

[image: image73.wmf]

6

b

[image: image74.wmf]

6

b

[image: image75.wmf]

6

b

[image: image76.wmf]

6

b

[image: image77.wmf]

6

b

[image: image78.wmf]

6

b

[image: image79.wmf]

6

b

[image: image80.wmf]

6

b

[image: image81.wmf]

6

b

[image: image82.wmf]

6

b

[image: image83.wmf]

6

b

[image: image84.wmf]

6

b

[image: image85.wmf]

6

b

[image: image86.wmf]

6

b

[image: image87.wmf]

6

b

[image: image88.wmf]

6

b

[image: image89.wmf]

6

b

[image: image90.wmf]

6

b

[image: image91.wmf]

6

b

[image: image92.wmf]

6

b

[image: image93.wmf]

6

b

[image: image94.wmf]

6

b

[image: image95.wmf]

6

b

[image: image96.wmf]

6

b

[image: image97.wmf]

6

b

[image: image98.wmf]

6

b

[image: image99.wmf]

6

b

[image: image100.wmf]

6

b

[image: image101.wmf]

6

b

[image: image102.wmf]

6

b

[image: image103.wmf]

6

b

Actual code

void LinkList::sort()

{

ListElement *temp = new ListElement;

assert(temp);

for(ListElement *start = Head; start->Successor != NULL;start = start->Successor)

for(ListElement *traverse = start->Successor; traverse != NULL;traverse = traverse->Successor)

{

 if(traverse->Impact < start->Impact)

{

temp->Risk = traverse->Risk;

temp->Probability = traverse->Probability;

temp->Impact = traverse->Impact;

temp->Category = traverse->Category;

traverse->Risk = start->Risk;

traverse->Probability = start->Probability;

traverse->Impact = start->Impact;

traverse->Category = start->Category;

start->Risk = temp->Risk;

start->Probability = temp->Probability;

start->Impact = temp->Impact;

start->Category = temp->Category;

 } // end if

 }// end for loop

 }//end of function
13. RiskInputFromDB (is the main user interface for the user who wants to use our database of risks.

Pseudo code

a. Interact with the user in a friendly way telling them how to return to the main menu, how to add more risks, and what to expect to enter. Tell the user where to find the information needed to use this part of the system.

b. Create a while loop that allows the user to enter multiple risks and allows the user to view the risk they just entered prior to moving on to the next risk.

c. Create a system where the user cannot enter incorrect data by prompting the user to reenter information.

d. Create a boolean variable and create a while loop that will allow the user to continually enter a risk key until they get the one they want. When the user is happy with their entry set the boolean variable to false and move on to the next stage.

e. Inside the nested while loop prompt the user for the risk key; which they have located on the web page. Error check their entry and then retrieve that risk from the system database. Once the risk is retrieved display the risk on the screen and ask the user if this is the correct risk? If they answer yes set the boolean variable controlling the while loop to false and move on to the next section.

f. Reset the pointer Cursor using the InitCursor() function, retrieve had the potential to move the pointer Cursor from its standard position of being equal to the pointer Head.

g. Interact with the user to input the probability the user thinks that their risk will occur. Error check the users information to make sure it is between 1 and 99. if the information is outside of 1 or 99 prompt the user for the probability information until they get it inside the correct range using a while loop [while(prob < 1 || prob >99)] .

h. Interact with the user to identify what the different range of impacts are and then ask the user to input what they think the impact of the risk will be for their organization if that risk occurs.

i. Take the information that retrieve retrieved and the information from the user and insert in a function as parameters so that the information may be inserted into the users database. [insertInOrder(key,risk,category,probability,impact);]

j. Clear the screen and allow the user to enter another risk from our database if they so chose, using a simple while loop with a interactive session with the user.

Actual code

void LinkList::RiskInputFromDB(LinkList &k)

{

int num = 0, impact, probability;

string risk = ".." , category = " ";

bool Success = true;

char verify = 'n'; // verifies correct risks is entered

clrscr();

cout << "You may enter as many risks as you like!" << endl ;

cout << "To quit enter (-1) when prompted\n";

cout << "\nTo return to main menu:\n";

cout << "(1) enter (-1) when prompted\n";

cout << "(2) enter (Y) at the next prompt\n\n";

cout << "you will find the risk number(s) on the risk table web page\n";

cout << "When prompted enter the number(key) to the corresponding risk\n";

cout << "You will then be prompted to enter a probability and impact\n";

cout << "for the risks that you entered... good luck\n\n";

cout << "A impact table is located on the risk table builder website!\n\n";

verify = 'n';

while(verify == 'n')

{

Success = false;

cout << "Enter risk number(1-96) from the risk tables (-1) to quit: ";

cin >> num;

if(num == -1)

{

clrscr();

return;

}

if(num < 1 || num > 96)

{

while(num < 1 || num > 96)

{

cout << "The risk number must be a number from (1 to 300)";

cout << "\nplease enter a new risk number: ";

cin >> num;

}

}

this->RetrieveRisk(risk, num , category, Success);

cout << "\n" <<risk<< endl<<endl<< "Is this the correct risk (y/n)? ";

cin >> verify;

}

this->InitCursor();

cout << "\nEnter the probability that the risk will occur(1 - 99): ";

cin >> probability;

if(probability < 1 || probability > 99)

{

while(probability < 1 || probability > 99)

{

cout << "Probability must be an integer between 1 and 99";

cout << "\nPlease enter a new probability: ";

cin >> probability;

}

}

cout << "\nEnter the impact that the risk will have please?\n";

cout << "A impact table is located on the risk table builder website!\n";

cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

cout << "4 for Negligible: ";

cin >> impact;

if(impact < 1 || impact > 4)

{

while(impact < 1 || impact > 4)

{

cout << "Impact must be an integer between 1 and 4";

cout << "\nPlease enter a new probability: ";

cout << "\n1 for Catastrophic, 2 for Critical, 3 for Marginal, ";

cout << "4 for Negligible: ";

cin >> impact;

}

}

k.InsertInOrder(x, risk, category, probability,impact);

x++;

clrscr();

 }
14. Insert (insert information into the systems database, order is not important to the system. The function will either create the list in the standard link list fashion or if the pointer Cursor is not pointing to the same node as the pointer Head it will insert the node in between the pointer Prev and Cursor. This function is only used in the non-member function MakeDataBase which makes the systems database.

Pseudo code

a. check to see if this is the first node by checking to make sure Cursor is not equal to NULL in a if statement.

b. If(Cursor == Head) is true create a new node using the head pointer Head = new ListElement;
c. Assert(Head) to make sure that memory was set aside for the new node.

d. Set the pointer Head(Successor = Cursor so that the node which is the end node will have its Successor pointer pointing to NULL.

e. Set the pointer Cursor equal to Head (Cursor = Head) so that the pointer Cursor points to the same position as the pointer Head.

f. If(Cursor==Head) is false create a else block.

g. Inside the else block make a new node using the pointer Prev(Successor and then assert() that memory was set aside for the new node. Set the pointer Prev(Successor(Successor = Cursor so that the new node is linked to the rest of the list. Set Cursor equal to Prev(Successor to reset the pointer to the first node. This sequence allows the insertion of the node in-between the pointers Cursor and Prev this then ends the else block

h. Enter the parameters into the node as data using the pointer Cursor. Cursor(Risk = risk, Cursor(Key = key, and Cursor(Category = category.

i. Check to make sure that the new node is not the end node using an if statement if(at the end) if it is at the end set the pointer Rear equal to the pointer Cursor.

Actual code

void LinkList::Insert(string risk, int key, string category)

//Inserts El as info portion of new element which is pointed to by Cursor

//Pre : List is initialized and El defined.

//Post: Element formerly pointed to by Cursor is successor to

// new list element, Cursor pointes to new element. If Head

// is NULL or Head == Cursor; El is inserted as first list

// element, sets Cursor to point to it. Increments Size.

{

if (Cursor == Head)

{ //insert new head

Head = new ListElement; //connect new element to Head

assert(Head);

 Head->Successor = Cursor; //connect it to rest of list

Cursor = Head; //reset Cursor

}

else

{

//insert between Prev and Cursor

//allocate new node and connect to predecessor

Prev->Successor = new ListElement;

 assert(Prev->Successor);

//link new element to rest of list

Prev->Successor->Successor = Cursor;

//reset Cursor

Cursor = Prev->Successor;

}

Cursor->Risk = risk;

Cursor->Key = key;

Cursor->Category = category;

Size++;

if (AtEnd()) //update Rear if new node at end

Rear = Cursor;

}

15. MakeDataBase (is the function that makes the systems database; the function receives the systems link list as its only parameter and is not a member function as it manipulates no data.

Pseudo code

a. Call the insert function repeatedly with information to fill the systems database.

b. The information is supplied at compile time and has no interaction with the user or system data so order of insertion is not important; what is important is that the parameters are correctly inserted. The parameter key must be associated with the risk from the web based database.

c. Create a first node to initialize the list.
Actual code

void MakeDataBase(LinkList &l)

{

l.Insert("greg and nicole" , 9999, "no");

l.Insert("Personnel shortfalls",1,"TP");

l.Insert("Unrealistic schedules and budgets",2,"TP");

l.Insert("Developing the wrong software functions",3,"TP");

l.Insert("Developing the wrong user interface",4,"TP");

l.Insert("Gold plating",5,"TP");

l.Insert("Continuing stream of requirements changes",5,"TP");

l.Insert("Shortfalls in externally furnished components",6,"TP");

l.Insert("Shortfalls in externally produced tasks",7,"TP");

l.Insert("Real-Time performance shortfalls",8,"TP");

l.Insert("Straining computer-science capabilities",9,"TP");

l.Insert("Estimated size of project in LOC or FP" , 11, "PS");

l.Insert("Degree of confidence in estimated size estimate" , 12, "PS");

l.Insert("Estimated size of product in number of programs, files, transactions" , 13, "PS");

l.Insert("% deviation in size of product from average for previous products", 14, "PS");

l.Insert("Size of database created or used by product", 15, "PS");

l.Insert("Number of users of the product", 16, "PS");

l.Insert("# of projected changes to the environment for the product, before or after delivery", 17, "PS");

l.Insert("Amount of reused software",18, "PS");

l.Insert("Effect of this product on company revenue", 19, "BI");

l.Insert("Visibility of this product by senior management", 20, "BI");

l.Insert("Reasonableness of delivery deadlines", 21, "BI");

l.Insert("# of customers who will use this product and the consistancy of their needs", 22, "BI");

l.Insert("# of other products/systems with which this product must be interoperable",23,"BI");

l.Insert("Sophistication of end users", 24, "BI");

l.Insert("Amount/quality of documents to be delivered to the customer",25,"BI");

l.Insert("Governmental constraints on the construction of the product",26,"BI");

l.Insert("Costs associated with late delivery",27,"BI");

l.Insert("Costs associated with a defective product",28,"BI");

l.Insert("Have you worked with the customer in the past",29 , "CC");

l.Insert("Does the cust. have a solid idea of what is required and written it down", 30 , "CC");

l.Insert("Will cust. have formal requirements meetings to ID project scope",31, "CC");

l.Insert("Cust. willing to establish rapid communications links with the developer",32, "CC");

l.Insert("Is the customer willing to participate in reviews",33, "CC");

l.Insert("Is the customer technically sophisticated in the product area",34,"CC");

l.Insert("Is the customer willing to let you do your job", 35, "CC");

l.Insert("Does the customer understand the software engineering process",36, "CC");

l.Insert("Does senior management support a written policy statement with regards to standard porcess",37, "PD");

l.Insert("Has your org. developed a written description of the software process for software developement",38,"PD");

l.Insert("Staff members signed-up on the software process and willing to use it",39,"PD");

l.Insert("Is the software process used for other porjects",40,"PD");

l.Insert("Has your org developed or acquired a series of SW Eng training courses",41,"PD");

l.Insert("Are published SW Eng. standards provided for everyone",42,"PD");

l.Insert("Has document outlines and examples been developed for all deliverables",43,"PD");

l.Insert("Are formal tech. reviews of requirements spec, design, and code conducted regularly",44,"PD");

l.Insert("Are formal tech reviews of test procedures conducted regularly",45,"PD");

l.Insert("Are the results of each formal tech review documented",46,"PD");

l.Insert("Is there a mech. for ensuring that work conducted on a project conforms with standards",47,"PD");

l.Insert("Is configuration management used to maintain consistency among systems/SW requirements",48,"PD");

l.Insert("Is a mechanism used for controlling changes to customer requirements that impact the sw",49,"PD");

l.Insert("Is there a documented statement of work,SW req spec, and sw developement plan for each subcontract",50,"PD");

l.Insert("Is there a procedure followed for tracking and reviewing the performance of subcontractors",51,"PD");

l.Insert("Are facilitated appl spec techniques used to aid in comm between cust and developer",52,"TI");

l.Insert("Are specific methods used for software analysis",53,"TI");

l.Insert("Do you use specific method for data and architecture designs",54,"TI");

l.Insert("Is more then 90% of your code written in a high order language",55,"TI");

l.Insert("Are specific conventions for code documentation defined and used",56,"TI");

l.Insert("Do you use a specific method for test case design",57,"TI");

l.Insert("Are SW tools used to support SW planning and tracking activities",58,"TI");

l.Insert("Are configuration management tools used to control and track change activity",59,"TI");

l.Insert("Are SW tools used to support the SW analysis and design process",60,"TI");

l.Insert("Are tools used to create software prototypes",61,"TI");

l.Insert("Are software tools used to support the testing process",62,"TI");

l.Insert("Are SW tools used to support production and management of documentation",63,"TI");

l.Insert("Are quality metrics collected for all software projects",64,"TI");

l.Insert("Are productivity metrics collected for all SW projects",65,"TI");

l.Insert("Is the technology to be built new to your company",66,"TB");

l.Insert("Do cust. requirements demand the creation of new algorithms or technology",67,"TB");

l.Insert("Does the sw interface with new or unproven technology",68,"TB");

l.Insert("Does the sw interface with a DB system whose function and performance has not been proven",69,"TB");

l.Insert("Does the sw interface with vendor supplied sw products that are unproven",70,"TB");

l.Insert("Is a specialized used interface demanded by product requirements",71,"TB");

l.Insert("Do requirements demand that new components be built unlike any previously built by your company",72,"TB");

l.Insert("Do requirements demand the use of unconventional software",73,"TB");

l.Insert("Do req. demand unconventional sw methods, AI and artificial neural networks etc",74,"TB");

l.Insert("do requirements put excessive performance constraints on the product",75,"TB");

l.Insert("Is the customer uncertain that the functionality requested is \"do-able\"",76,"TB");

l.Insert("Is a sw project management tool available",77,"DE");

l.Insert("Is a sw process management tool available",78,"DE");

l.Insert("Are tools for analysis and design available",79,"DE");

l.Insert("Do analysis and design tools deliver appropriate methods for the product",80,"DE");

l.Insert("Are compilers or code generators available and appropriate for the product",81,"DE");

l.Insert("Are testing tools available and appropriate for the product to be built",82,"DE");

l.Insert("Are sw configuration management tools available",83,"DE");

l.Insert("Does the environment make use of a DB or a repository",84,"DE");

l.Insert("Are all software tools integrated with one another",85,"DE");

l.Insert("Have members of the project teams received training in each of the sw tools",86,"DE");

l.Insert("Are local experts available to answer questions about the tools",87,"DE");

l.Insert("Is on-line help and documentation for the tools adequate",88,"DE");

l.Insert("Are the best people available",89,"SS");

l.Insert("Do the people have the right combination of skills",90,"SS");

l.Insert("Are enough people available",91,"SS");

l.Insert("Are staff committed for entire duration of the project",92,"SS");

l.Insert("Will some staff be working only part time on this project",93,"SS");

l.Insert("Do staff have the right expectations about the job at hand",94,"SS");

l.Insert("Have staff received the necessary training",95,"SS");

l.Insert("Will turnover among staff be low enough to allow continuity",96,"SS");

}

16. main (initializes two link list variables one for the systems use and one that the users uses. The main function then begins the interaction with the user with friendly tips and creating a way for the user to return to the main menu. The main function is set up using a switch statement that allows the user to control the software.

Pseudo code

a. Create a link list object for the system to use.

b. Create a link list object for the system to store the users information in.

c. Call the function makeDataBase() with the systems link list object as its only parameter.

d. Create a while loop that contains all the statements and functions that interact with the user.

e. Inside the while loop clear the screen and enter disclaimer information for the user of the software.

f. Print to the screen helpful tips so that the user can make educated decisions. These hints include where the following files are located help, step-by-step directions, list of risks, how to return to this menu, and how to exit the system.

g. Prompt the user for to make an option one to enter their own risks or two enter risks from our web pages.

h. Input the risk and enter it into a case switch statement that corresponds with the users request and then use the case to call the correct functions. Either RiskInputFromDB which is for the user who wants to use our data base or insertFromUser which allows the user to enter their own risks.

i. A statement that prompts the user how to exit the system.

j. Interact with the user asking if they want to quit the system, this is the value in the while loop above.

k. Clear the screen

l. Sort the users database.

m. Print the users information

n. Output the users info to a file.

Actual code

int main()

{

char choice = 'y';

char finished = 'y';

int op;

LinkList l;

LinkList k;

MakeDataBase(l);

while(finished == 'y')

{

 clrscr();

 cout << "Program written by Chrispen, Kutcher,and Nugent\n";

 cout << "University of Michigan-Dearborn 1999\n";

 cout << "For more info email AfNugent@hotmail.com \n\n";

 cout << "Help files located on Risk table builder web page!\n";

 cout << "Step by step instructions are on the web page also!\n\n";

 cout << "When prompted \"Back to the start (y/n):\" ";

 cout << "\nEnter yes (Y) to return to this point";

 cout << "\nEnter no (N) to exit the system\n";

 cout << "\nPlease pick an option (1 or 2)";

 cout << "\n(1) Enter from risk tables provided? ";

 cout << "\n(2) Enter your own risks? ";

 cin >> op;

 switch(op)

{

 case 1:

l.RiskInputFromDB(k);

break;

 case 2:

while(choice == 'y')

{

l.InsertFromUser(k);

cout << "\nWould you like to enter another risk (y/n): ";

cin >> choice;

cout << endl;

clrscr();

}

 break;

 default: cout << "try again...";

 }

 cout << "If you have completed entering risk factors enter (n)";

 cout << " to exit program\n";

 cout << "\nBack to the start (y/n)... ";

 cin >> finished;

 }

clrscr();

k.sort();

k.print();

k.output();

return 0;

}

Cgi and Perl scripts

MkRiskfile.cgi

Pseudo code

a. Tell the program where the Perl compiler is.

b. Include the header file cgi-lib.pl

c. Parse the incoming values with the function &readparse(*values)

d. Establish that the output is a html file

e. Print the html lines of code (<html> <head> <title>)

f. Close the title </title>

g. Communicate with the user that they need to hit the back button to continue entering risks or the proceed button to evaluate their risks.

h. Make a proceed button that calls the file risktable.cgi is the button is clicked.

i. Close the form </form>, body </body>, and the html tags </html>

j. Create and open he file riskfile.

k. Send the fields risk, prob, category, and impact to the file riskfile.

l. Close the file riskfile.

m. Exit the program.

Actual code

#!/usr/bin/perl

require "/applications/httpd/cgi-bin/cgi-lib.pl";

&ReadParse(*values);

print "Content-type: text/html\n\n";

print "<html>\n";

print "<head>\n";

print "<title>\n";

print "making the risk file \n";

print "</title>\n";

print "<body>\n";

print "<h3> We have added your risk </h3>\n";

print " Hit back on your browser ";

print "to add another risk or the process button below to ";

print "evaluate all of your risks\n";

print "If you proceed to evaluate your risks you";

print " cannot add anymore information to your table\n";

print "You will have to start over!";

print "<p> \n";

print "<form method =\"post\"

action=\"http://www.engin.umd.umich.edu/cgi-bin/cgiwrap/artcat/risktable.cgi\">";

print "<input type = \"submit\" value = \"Process all Risks \"> \n";

print "</form>\n";

print "</body> \n";

print "</html> \n";

open (OUT, ">>riskfile");

print OUT "$values{risk}|$values{category}|$values{prob}|$values{impact}\n";

close(OUT);

exit 0;
· Struct (the internal data of the link list is held in a struct. The structure allows different data types to be combined into a single data entity. In this case we use two strings and three integers and a pointer. The pointer is used to point to the next struct in memory and the strings and integers are used to hold data.

RiskTable.cgi

Pseudo code

a. Tell the program where to find the perl compiler.

b. Open the file riskfile and name the input risk.

c. Parse the input with the function chop.

d. Create the html code to output a table.

e. Tell the output that it’s content is an html file.

f. Build the header and title components of the html file.

g. Establish the table with border setting of 1 , cell padding = 2, and cell spacing = 2.

h. Create a header with all entries center spaced, the header contains Risk, Category, impact, probability, and RMMM.

i. Inside a for loop read the incoming data and parse the data so that it wraps.

j. End the table and html.

k. Echo the riskfile to empty the contents

Actual code

#!/bin/perl

open(risk, "riskfile");

@risks=<risk>;

chop(@risks);

print<<TABLECODE;

Content-type: text/html

<html>

<head><title>Risk Table</title></head>

<body bgcolor="#ffffff">

<center>

<table border=1 cellpadding=2 cellspacing=2>

<tr>

<th colspan=5>Risk Table</th>

</tr>

<tr>

<th align=center>Risk</td>

<th align=center>Category</td>

<th align=center>Probability</td>

<th align=center>Impact</td>

<th align=center>RMMM</td>

</tr>

TABLECODE

for(@risks)

{

if($_ ne "")

{

$_=~s/ / \ \;/g;

($risk,$category,$prob,$imp)=split(/\|/,$_);

print "<tr><td>$risk</td><td align=center>$category</td><td align=center>$prob</td><td align=center>$imp</td><td> </td></tr>\n";

}

}

print "</table></html>\n";

system("echo >riskfile");

Other data structures

struct ListElement

{

[image: image104.wmf]

6

b

 string Risk;

[image: image105.wmf]

6

b

 string Category;

 int Probability;

 int Impact;

 int Key;

[image: image106.wmf]

6

b

 ListElement *Successor;

};
Global Data Structures

Temporary Data Structures

· Link list (the link list that is created to hold the users information. An instance of the same link list talked about above is used to hold the users data. The data is stored in the linklist only as long as the program is running.

· File (the online system creates a file name risk file that holds the users information while the user is entering more risks factors. When the user publishes their data risktable.cgi erases the file so that the next user starts with a empty data file.

Database Description

PDL’s

Actual code

void LinkList::RiskInputFromDB(LinkList &k)

{

int num = 0, impact, probability;

string risk = ".." , category = " ";

bool Success = true;

char verify = 'n';

clrscr();

cout << "You may enter as many risks as you like!" << endl ;

cout << "To quit enter (-1) when prompted\n";

cout << "\nTo return to main menu:\n";

cout << "(1) enter (-1) when prompted\n";

cout << "(2) enter (Y) at the next prompt\n\n";

cout << "you will find the risk number(s) on the risk table web page\n";

cout << "When prompted enter the number(key) to the corresponding risk\n";

cout << "You will then be prompted to enter a probability and impact\n";

cout << "for the risks that you entered... good luck\n\n";

cout << "A impact table is located on the risk table builder website!\n\n";

while(Success == true)

{

verify = 'n';

while(verify == 'n')

{

Success = false;

cout << "Enter risk number(1-96) from the risk tables(-1)to quit: ";

cin >> num;

if(num == -1)

{

clrscr();

return;

}

if(num < 1 || num > 96)

{

while(num < 1 || num > 96)

{

cout << "The risk number must be a number from (1 to 96)";

cout << "\nplease enter a new risk number: ";

cin >> num;

}

}

this->RetrieveRisk(risk, num , category, Success);

cout<<"\n"<<risk<< endl<<endl<< "Is this the correct risk (y/n)?";

cin >> verify;

}

this->InitCursor();

cout << "\nEnter the probability that the risk will occur(1 - 99): ";

 cin >> probability;

if(probability < 1 || probability > 99)

{

while(probability < 1 || probability > 99)

{

cout << "Probability must be an integer between 1 and 99";

cout << "\nPlease enter a new probability: ";

 cin >> probability;

}

 }

 cout << "\nEnter the impact that the risk will have please?\n";

cout << "A impact table is located on the risk table builder website!\n";

cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

cout << "4 for Negligible: ";

cin >> impact;

 if(impact < 1 || impact > 4)

{

while(impact < 1 || impact > 4)

{

cout << "Impact must be an integer between 1 and 4";

cout << "\nPlease enter a new probability: ";

cout << "\n1 for Catastrophic, 2 for Critical, 3 for Marginal, ";

cout << "4 for Negligible: ";

cin >> impact;

}

}

 k.InsertInOrder(x, risk, category, probability,impact);

x++;

clrscr();

}

clrscr();

}

PDL

Procedure: RiskInputFromDB

1. types initialized to 0 or “ “ as appropriate

integers; num, impact, probability;

strings; risk, category;

bool success;

char verify

2. clear screen

3. build the user interface to interact with the user

4. while the user has more risks to enter

set Boolean variable verify to ‘n’ or true;

5. while the user finds the correct risks to match their key from the web

set success = false;

interact with the user to get their risk key;

read key;

6. if key is the quit signal

7. then return to the main program

clear the screen;

return;

8. end if

9. if the key is not between 1 and 96

10. then prompt for a new key until they get it right

11. while the key is not between 1 and 96

prompt the user to their mistake and ask for a new key;

read key;

12. end while

13. end if

14. retrieve the risk, key, category, and Boolean success from the system db

15. prompt the user to make sure their key matches the systems risk;

16. read verify

17. end while

18. initialize the cursor using initCursor;

19. prompt the user for a probability;

20. read probability;

21. if the probability is not between 1 and 99

22. then prompt the user for a new probability repeatedly until corrected

23. while probability is not between 1 and 99

clear the screen;

prompt the user for a new probability;

read probability;

24. end while

25. end if

26. prompt the user for a risk impact;

27. provide the user with impact categories;

28. read impact;

29. if the impact is not between 1 and 4

30. then prompt repeatedly until correct impact entered

31. while impact ,1 or > 4

prompt for new impact;

read new impact;

32. end while

33. end if

34. insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function;

35. increment the global variable that represents the users key;

36. clear the screen;

37. end while

38. end

Actual code

void LinkList::print()

{

ListElement *start = Head;

clrscr();

cout << " Key\tRisk\n --- ---";

cout << "----------\n";

while(start != NULL)

{

 cout << " " << start->Key << "\t" << start->Risk << endl << endl;

 start = start->Successor;

}

start = Head;

cout << "\n\n\n Key\tCategory\tImpact\tProbability\tRMMM\n";

cout << " ---\n";

while(start != NULL)

{

 cout << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

 cout << start->Impact << "\t " << start->Probability << endl;

 start = start->Successor;

}

cout << "\nCategories for impacts\n----------------------\n";

cout << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n(4) - Negligible";

cout << "\n\n\nRMMM - Risk Monitoring, Management, and Mitigation \n";

cout << "Place an x in that column if you think the risk needs to be monitored";

}

PDL

Procedure: print

1. create a pointer to a ListElement named start and set it = to the pointer head;

2. clear the screen.

3. create a header for the risk table include key and risk and print it to the screen;

4. while the list exists iterate the list

print to the screen the key and risk from a ListElement;

set start = start successor;

5. end while

6. set start = to the pointer head;

7. create a header which includes key, category, impact, probability, and RMMM for the risk table itself and print it to the screen;

8. while the list exists iterate the list

print the key, category, impact, and probability in a formatted output.

Set start = start successor;

9. end while

10. print to the screen a explanation of impact abbreviations and helpful tips like what RMMM is used for;

11. end

Actual code

void LinkList::output()

{

ofstream outData;

outData.open("RTable.txt");

ListElement *start = Head;

outData << " Key\tRisk\n";

outData<< " --\n";

while(start != NULL)

{

outData << " " << start->Key << "\t" << start->Risk << endl<<endl;

start = start->Successor;

}

start = Head;

outData << "\n\n\n Key\tCategory\tImpact\tProbability\t\tRMMM\n";

outData << " ---\n";

while(start != NULL)

{

outData << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

outData << start->Impact << "\t\t " << start->Probability << endl;

start = start->Successor;

}

outData << endl << "Categories for impacts\n";

outData << "----------------------\n";

outData << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n";

outData << "(4) – Negligible\n\n\n";

outData << "RMMM - Risk Monitoring, Management, and Mitigation \n";

outData << "Place an x in that column if you think the risk needs";

outData << " to be monitored";

}

PDL

Procedure: output

12. create an object of ofstream and use that object to create/open a file named RTable.txt;

13. create a pointer to a ListElement named start and set it = to the pointer head;

14. create a header for the risk table include key and risk and send to text file;

15. while the list exists iterate the list

send to the txt file the key and risk from each ListElement;

set start = start successor;

16. end while

17. set start = to the pointer head;

18. create a header which includes key, category, impact, probability, and RMMM for the risk table itself and send it to the txt file;

19. while the list exists iterate the list

send to the text file the key, category, impact, and probability in a formatted output.

Set start = start successor;

20. end while

21. send to the text file a explanation of impact abbreviations and helpful tips like what RMMM is for;

22. end

Actual code

void LinkList::Advance()

{

if(Cursor != NULL)

{

Prev = Cursor;

Cursor = Cursor->Successor

}

 }

PDL

Procedure: Advance
1. if Cursor != NULL

2.
Then move the pointers Prev and Cursor up one ListElement

set the pointer Prev = to the pointer Cursor

set the pointer Cursor = to Cursors successor

3. end if

4. end

Actual code

bool LinkList::AtEnd()

{

bool EndList;

if(Cursor == NULL)

EndList = true;

else if (Cursor->Successor == NULL)

EndList = true;

else

EndList = false;

 return(EndList);

}

PDL

Procedure: AtEnd

1. if list is empty

2. then return true

set return value to true;

3. else if list is at the end

4. then return true

set return value to true;

5. else set the return value to false;

6. end if

7. end if

8. end

Actual code

LinkList::~LinkList()

{

 ListElement* OldHead;

while(Head != NULL)

{

OldHead = Head;

Head = Head->Successor;

delete(OldHead);

}

Prev = NULL;

Size = 0;

}

PDL

Procedure: ~LinkList

1. create a new pointer to a listElement

2. while ListElements remain

 set new pointer = Head

 set head = to Heads Successor

 delete ListElement pointed to be the new pointer

3. end while

4. set Prev = NULL;

5. set size = 0;

6. end

Actual code

void LinkList::InitCursor()

{

 Cursor = Head;

 Prev = NULL;

}

PDL

Procedure: InitCursor

1. reset Cursor = to Head;

2. set Prev = to NULL;

3. end

Actual code

void LinkList::InsertInOrder(int key, string risk, string category,

 int probability, int impact)

{

ListElement *start = new ListElement;

assert(start);

start->Key = key;

start->Risk = risk;

start->Category = category;

start->Impact = impact;

start->Probability = probability;

start->Successor = NULL;

if (Head == NULL || Head->Probability < start->Probability)

{

start->Successor = Head;

Head = start;

Cursor = Head;

}

else

{

ListElement *Current = Head;

while(Current->Successor != NULL &&

 Current->Successor->Probability > start->Probability)

{

Current = Current->Successor;

}

start->Successor = Current->Successor;

Current->Successor = start;

}

Size++;

if(start->Successor == NULL)

Rear = start;

}

PDL

Procedure: InsertInOrder

1. create a new ListElement and a pointer to it;

2. assert the memory was set aside;

3. store key in Key field;

store category in Category field;

store risk in risk in Risk field;

store impact in Impact field;

store probability in Probability field;

4. set new ListElement successor to NULL:

5. if new list or 1st ListElement probability is < new ListElement probability

6. then set new ListElement successor = Head;

set Head = new ListElement pointer;

set Cursor = Head;

7. else create a ListElement pointer named current

while current != NULL and current successor probability is < new ListElement probability

current = current successor

end while

start successor = current successor;

current successor = start;

8. end if

9. increment the variable size;

10. if the ListElement was inserted in the last position

11. then set Rear = start

12. end if

13. end

Actual code

void LinkList::Insert(string risk, int key, string category)

{

 if (Cursor == Head)

{

Head = new ListElement;

 assert(Head);

Head->Successor = Cursor;

Cursor = Head;

 }

 else

{

Prev->Successor = new ListElement;

assert(Prev->Successor);

Prev->Successor->Successor = Cursor;

Cursor = Prev->Successor;

}

 Cursor->Risk = risk;

 Cursor->Key = key;

 Cursor->Category = category;

 Size++;

 if (AtEnd())

Rear = Cursor;

}

PDL

Procedure: Insert

1. if cursor is = to head

2. then insert the new ListElement

create a new ListElement and set head = to it;

assert that memory was set aside;

set head successor = cursor;

set cursor = head;

3. else insert the new ListElement between prev and cursor

create a new ListElement and set prev successor = to it;

assert that memory was set aside for the new node;

set prev successor successor = cursor;

set cursor = prev successor;

4. end if

5. set cursor Risk = risk;

6. set Cursor Key = key;

7. set Cursor Category = category;

8. increment size by one;

9. if the ListElement is the last node

10. then reset the pointer rear

 set rear = cursor;

11. end if

12. end

Actual code

bool LinkList::IsEmpty()

{

return(Size = = 0);

}

PDL

Procedure: IsEmpty

1. if size of list = 0

 then return true;

2. end if

3. end

Actual code

LinkList::LinkList()

{

 Head = NULL;

 Prev = NULL;

 Cursor = NULL;

 Rear = NULL;

 Size = 0;

}

PDL

Procedure: LinkList

1. set Head = NULL

2. set Prev = NULL;

3. set Cursor = NULL;

4. set Rear = NULL;

5. set size = 0;

6. end

Actual code

void MakeDataBase(LinkList &l)

{

l.Insert("greg and nicole" , 9999, "no");

l.Insert("Personnel shortfalls",1,"TP");

l.Insert("Unrealistic schedules and budgets",2,"TP");

l.Insert("Developing the wrong software functions",3,"TP");

l.Insert("Developing the wrong user interface",4,"TP");

l.Insert("Gold plating",5,"TP");

l.Insert("Continuing stream of requirements changes",5,"TP");

l.Insert("Shortfalls in externally furnished components",6,"TP");

l.Insert("Shortfalls in externally produced tasks",7,"TP");

l.Insert("Real-Time performance shortfalls",8,"TP");

l.Insert("Straining computer-science capabilities",9,"TP");

l.Insert("Estimated size of project in LOC or FP" , 11, "PS");

l.Insert("Degree of confidence in estiamted size estimate" , 12, "PS");

l.Insert("Estimated size of product in number of programs, files, transactions" , 13, "PS");

l.Insert("% deviation in size of prodect from average for previous products", 14, "PS");

l.Insert("Size of database created or used by product", 15, "PS");

l.Insert("Number of users of the product", 16, "PS");

l.Insert("# of projected changes to the environment for the product, before or after delivery", 17, "PS");

l.Insert("Amout of reused software",18, "PS");

l.Insert("Effect of this product on company revenue", 19, "BI");

l.Insert("Visibility of this product by senior management", 20, "BI");

l.Insert("Reasonableness of delivery deadlines", 21, "BI");

l.Insert("# of customers who will use this product and the consistancy of their needs", 22, "BI");

l.Insert("# of other products/systems with which this product must be interoperable",23,"BI");

l.Insert("Sophistication of end users", 24, "BI");

l.Insert("Amount/quality of documents to be delivered to the customer",25,"BI");

l.Insert("Governemental constraints on the construction of the product",26,"BI");

l.Insert("Costs associated with late delivery",27,"BI");

l.Insert("Costs associated with a defective product",28,"BI");

l.Insert("Have you worked with the customer in the past",29 , "CC");

l.Insert("Does the cust. have a solid idea of what is required and written it down", 30 , "CC");

l.Insert("Will cust. have formal requirements meetings to ID project scope",31, "CC");

l.Insert("Cust. willing to establish rapic sommunications links with the developer",32, "CC");

l.Insert("Is the customer willing to participate in reviews",33, "CC");

l.Insert("Is the customer technically sophisticated in the product area",34,"CC");

l.Insert("Is the customer willing to let you do your job", 35, "CC");

l.Insert("Does the customer understand the software engineering process",36, "CC");

l.Insert("Does senior management support a written policy statement with regards to standard porcess",37, "PD");

l.Insert("Has your org. developed a writted desciption of the software process for software developement",38,"PD");

l.Insert("Staff members signed-up on the software process and willing to use it",39,"PD");

l.Insert("Is the software process used for other porjects",40,"PD");

l.Insert("Has your org developed or acquired a series of SW Eng training courses",41,"PD");

l.Insert("Are published SW Eng. standards provided for everyone",42,"PD");

l.Insert("Has document outlines and examples been developed for all deliverables",43,"PD");

l.Insert("Are formal tech. reviews of requirements spec, design, and code conducted regularly",44,"PD");

l.Insert("Are formal tech reviews of test proceedured conducted regularly",45,"PD");

l.Insert("Are the results of each formal tech review documented",46,"PD");

l.Insert("Is there a mech. for ensuring that work conducted on a project conforms with standards",47,"PD");

l.Insert("Is configuration management used to maintain consistancy among systems/SW requirements",48,"PD");

l.Insert("Is a mechanism used for controlling changes to customer requirements that impact the sw",49,"PD");

l.Insert("Is there a documented statement of work,SW req spec, and sw developement plan for each subcontract",50,"PD");

l.Insert("Is there a proceedure followed for tracking and reviewing the performance of subcontractors",51,"PD");

l.Insert("Are facilitated appl spec techniques used to aid in comm between cust and developer",52,"TI");

l.Insert("Are specific methods used for software analysis",53,"TI");

l.Insert("Do you use specific method for data and architecture designs",54,"TI");

l.Insert("Is more then 90% of your code written in a high order language",55,"TI");

l.Insert("Are specific conventions for code documentation defined and used",56,"TI");

l.Insert("Do you use a specific method for test case design",57,"TI");

l.Insert("Are SW tools used to support SW planning and tracking activities",58,"TI");

l.Insert("Are configuration management tools used to control and track change activity",59,"TI");

l.Insert("Are SW tools used to support the SW analysis and design process",60,"TI");

l.Insert("Are tools used to create software prototypes",61,"TI");

l.Insert("Are software tools used to support the testing process",62,"TI");

l.Insert("Are SW tools used to support production and management of documentation",63,"TI");

l.Insert("Are quality metrics collected for all software projects",64,"TI");

l.Insert("Are productivity metrics collected for all SW projects",65,"TI");

l.Insert("Is the technology to be built new to your company",66,"TB");

l.Insert("Do cust. requirements demand the creation of new algorithms or technology",67,"TB");

l.Insert("Does the sw interface with new or unproven technology",68,"TB");

l.Insert("Does the sw interface with a DB system whose function and performance has not been proven",69,"TB");

l.Insert("Does the sw interface with vendor supplied sw products that are unproven",70,"TB");

l.Insert("Is a specialized used interface demanded by product requirements",71,"TB");

l.Insert("Do requirements demand that new components be built unlike any previously built by your company",72,"TB");

l.Insert("Do requirements demand the use of unconventional software",73,"TB");

l.Insert("Do req. demand unconventional sw methods, AI and artificial neural networks etc",74,"TB");

l.Insert("do requirements put excessive performance constraints on the product",75,"TB");

l.Insert("Is the customer uncertain that the functionality requested is \"do-able\"",76,"TB");

l.Insert("Is a sw project managemnet tool available",77,"DE");

l.Insert("Is a sw process management tool available",78,"DE");

l.Insert("Are tools for analysis and design available",79,"DE");

l.Insert("Do analysis and design tools deliver appropriate methods for the product",80,"DE");

l.Insert("Are compilers or code generators available and appropriate for the product",81,"DE");

l.Insert("Are testing tools available and appropriate for the product to be built",82,"DE");

l.Insert("Are sw configuration management tools available",83,"DE");

l.Insert("Does the environment make use of a DB or a repository",84,"DE");

l.Insert("Are all software tools integrated with one another",85,"DE");

l.Insert("Have members of the project teams recieved training in each of the sw tools",86,"DE");

l.Insert("Are local experts available to answer questions about the tools",87,"DE");

l.Insert("Is on-line help and documentation for the tools adequate",88,"DE");

l.Insert("Are the best people available",89,"SS");

l.Insert("Do the people have the right combination of skills",90,"SS");

l.Insert("Are enough peeple available",91,"SS");

l.Insert("Are staff committed for entire duration of the project",92,"SS");

l.Insert("Will some staff be working only part time on this project",93,"SS");

l.Insert("Do staff have the right expectations about the job at hand",94,"SS");

l.Insert("Have staff recieved the necessary training",95,"SS");

l.Insert("Will turnover among staff be low enough to allow continuity",96,"SS");

}

PDL

Procedure: MakeDataBase

1. insert data into systems data base

call insert with a risk , category, and key #1;

repeat the step above till key = 96;

2. end

Actual code

void LinkList::RetrieveRisk(string &risk, int key,

 string &category, bool &Success)

{

if(Cursor == NULL)

Success = false;

else

{

while(! this->AtEnd())

{

if(Cursor->Key == key)

{

risk = Cursor->Risk;

category = Cursor->Category;

Success = true;

return;

}

this->Advance();

}

}

}
PDL

Procedure: RetrieveRisk

1. if there is no link list

2. then set success = false;

3. else iterate the list until key is found

4. while not at the end of the list

5. if key is equal to Key

6. then return the correct values

set risk = cursor risk;

set category = cursor category;

set boolean parameter to true;

return;

7. end if

8. call advance;

9. end while

10. end if

11. end

Actual code

void LinkList::sort()

{

ListElement *temp = new ListElement;

assert(temp);

for(ListElement *start = Head; start->Successor != NULL;

start = start->Successor)

for(ListElement *traverse = start->Successor; traverse != NULL;

traverse = traverse->Successor)

{

if(traverse->Impact < start->Impact)

{

temp->Risk = traverse->Risk;

temp->Probability = traverse->Probability;

temp->Impact = traverse->Impact;

temp->Category = traverse->Category;

traverse->Risk = start->Risk;

traverse->Probability = start->Probability;

traverse->Impact = start->Impact;

traverse->Category = start->Category;

start->Risk = temp->Risk;

start->Probability = temp->Probability;

start->Impact = temp->Impact;

start->Category = temp->Category;

}

}

}

PDL

Procedure: sort

1. create a new ListElement and make a pointer that points to it;

2. assert that memory was put aside for the new ListElement;

3. do for comparison of first ListElement till last ListElement

4. do for comparison of second ListElement till last ListElement

compare data in 1st ListElement to 2nd ListElement, 3rd ListElement etc;

compare data in 2nd ListElement to 3rd ListElement, 4th ListElement etc;

compare until last ListElement is reached;

5. if any ListElement impact data field is < 1st ListElement Impact data field

6. then swap the data in the ListElements

set temp risk data = 2nd ListElement risk data;

set temp probability data = 2nd ListElement probability data;

set temp impact data = 2nd ListElement impact data;

set temp category data = 2nd ListElement category data

set 2nd ListElement risk data = 3rd ListElement risk data;

set 2nd ListElement probability data = 3rd ListElement probability

set 2nd ListElement impact data = 3rd ListElement impact data;

set 2nd ListElement category data = 3rd ListElement category data;

set 3rd ListElement risk data = 2nd ListElement risk data;

set 3rd ListElement probability data = 2nd ListElement probability;

set 3rd ListElement impact data = 2nd ListElement impact data;

set 3rd ListElement category data = 2nd ListElement category data;

7. end if

8. end for

9. end for

10. end

Link list (we use an instance of the linklist above to store data in the system. Actual user interfaces

[image: image2.png]
This is the initial user interface when the system is first started.

[image: image3.png]
this is the user interface when the user chooses option one from the main menu.

[image: image4.png]
This is the screen where we prompt the user for their risk, then display the risk for the user to make sure that the risk corresponds to the risk they wanted. We then prompt the user to enter the probability of the risk occurring and the impact that the risk will have if the risk does in fact occur.

[image: image5.png]
This screen shows how the system will repeatedly ask the user to enter a new risk key if they enter one that is outside of the acceptable range.

[image: image6.png]
This screen shows the user saying the risk was not the one they intended and how the system dealt with the problem.

[image: image7.png]
This screen shows the program repeatedly asking the user for a probability between 1 and 99 until the user enters the correct value.

[image: image8.png]
This screen shows the user being repeatedly prompted for the correct impact

[image: image9.png]
This is the screen the user will see after they enter the impact for their first risk. They are then prompted to enter –1 if they want to quit or they can enter the next risk

[image: image10.png]
This is the screen the user sees after they enter (-1), they are prompted to whether or not they want to return to the main menu.

[image: image11.png]
This is the screen the user sees when they want to enter their own risks.

[image: image12.png]
This is the screen when the user enters their second set of risks.

[image: image13.png]
This is the screen the user will see if they enter a probability that is not between 1 and 99

[image: image14.png]
This is the screen the user gets when they enter an impact that is not between 1 and 4.

[image: image15.png]
The output to the screen, note: that the probabilities are in order from highest to lowest.

[image: image16.png]
The final 2 lines of the output to help the user use the table and find the editable output file.

The link list stores the strings risk and category along with an integer key. Key is used to help the user coordina Restrictions, Limitations, and Constraints

Testing client server architectures (performing system tests on as many different

· system architectures as possible so that the system can be sold to as many companies as possible.

· Test documents and help facilities (the range, accuracy, source, and frequency of use of the help files. Therefore, creations of a test plan and help facilities for different system is a challenge.

· Busy server (max number of surfers on the system at any one time (how many surfers can use the system at the same time without impacting performance.

· Numbers of people who can use the search engine at the same time (how many surfers can use the search engine without impacting system performance. Can the corporate system support multiple searches at the same time?

· Documentations training (during the training of business network administrators can the documentation system be adequately explained and shown how to use, to prevent multiple training sessions.

· Establishment of a logic based test plan (can a logic based test plan be developed that adequately tests the system logic that covers all the different types of code used in the system? Also can a logic based test plan be developed that covers the different types of servers and different software packages that might be used with the system.

· The size/length of the risk (the system will only support risks with a length of 320 characters or less. If the user tries to enter a longer risk the system will cut off the end of the risk.

· te with the online systems.

[image: image107.wmf]

6

b

Code

Risktable.cgi

#!/bin/perl

open(risk, "riskfile");

@risks=<risk>;

chop(@risks);

print<<TABLECODE;

Content-type: text/html

<html>

<head><title>Risk Table</title></head>

<body bgcolor="#ffffff">

<center>

<table border=1 cellpadding=2 cellspacing=2>

<tr>

<th colspan=5>Risk Table</th>

</tr>

<tr>

<th align=center>Risk</td>

<th align=center>Category</td>

<th align=center>Probability</td>

<th align=center>Impact</td>

<th align=center>RMMM</td>

</tr>

TABLECODE

for(@risks)

{

if($_ ne "")

{

$_=~s/ / \ \;/g;

($risk,$category,$prob,$imp)=split(/\|/,$_);

print "<tr><td>$risk</td><td align=center>$category</td><td align=center>$prob</td><td align=center>$imp</td><td> </td></tr>\n";

}

}

print "</table></html>\n";

system("echo >riskfile");

mkRiskFile.cgi

#!/usr/bin/perl

require "/applications/httpd/cgi-bin/cgi-lib.pl";

&ReadParse(*values);

print "Content-type: text/html\n\n";

print "<html>\n";

print "<head>\n";

print "<title>\n";

print "making the risk file \n";

print "</title>\n";

print "<body>\n";

print "<h3> We have added your risk </h3>\n";

print " Hit back on your browser ";

print "to add another risk or the process button below to ";

print "evaluate all of your risks\n";

print "If you proceed to evaluate your risks you";

print " cannot add anymore information to your table\n";

print "You will have to start over!";

print "<p> \n";

print "<form method =\"post\"

action=\"http://www.engin.umd.umich.edu/cgi-bin/cgiwrap/artcat/risktable.cgi\">";

print "<input type = \"submit\" value = \"Process all Risks \"> \n";

print "</form>\n";

print "</body> \n";

print "</html> \n";

open (OUT, ">>riskfile");

print OUT "$values{risk}|$values{category}|$values{prob}|$values{impact}\n";

close(OUT);

exit 0;

Msdos executable

#include <iostream.h>

#include <cstring.h>

#include <conio.h>

#include <stdio.h>

#include <iomanip.h>

#include <fstream.h>

#include <assert.h>

struct ListElement

{

 string Risk;

 string Category;

 int Probability;

 int Impact;

 int Key;

 ListElement *Successor;

};

class LinkList

{

 protected:

 ListElement *Head, *Cursor, *Prev, *Rear;

 int Size;

 public:

 LinkList();

 ~LinkList();

 //int GetSize();

 int IsEmpty();

 void InsertFromUser(LinkList &k);

 void RetrieveRisk(string &risk, int key,

 string &category, bool &Success);

 void InitCursor();

 bool AtEnd();

 void print();

 void Advance();

 void RiskInputFromDB(LinkList &k);

 void Insert(string risk, int key, string category);

 void InsertInOrder(int key, string risk, string category,

 int probability, int impact);

 void sort();

 void output();

};

int x = 1; //x is the key for the users risk linklist

//Implementation file for abstract data type LinkList.

void LinkList::InsertInOrder(int key, string risk, string category,

 int probability, int impact)

{

// inserts elements in process time order

ListElement *start = new ListElement;

 assert(start);

 start->Key = key;

 start->Risk = risk;

 start->Category = category;

 start->Impact = impact;

 start->Probability = probability;

 start->Successor = NULL;

if (Head == NULL || Head->Probability < start->Probability)

{

start->Successor = Head;

Head = start;

Cursor = Head;

}

 else

 {

 ListElement *Current = Head;

 while(Current->Successor != NULL &&

 Current->Successor->Probability > start->Probability)

{

 Current = Current->Successor;

 }

 start->Successor = Current->Successor;

 Current->Successor = start;

 }

 Size++;

 if(start->Successor == NULL)

Rear = start;

}

void LinkList::Insert(string risk, int key, string category)

//Inserts El as info portion of new element which is pointed to by Cursor

//Pre : List is initialized and El defined.

//Post: Element formerly pointed to by Cursor is successor to

// new list element, Cursor pointes to new element. If Head

// is NULL or Head == Cursor; El is inserted as first list

// element, sets Cursor to point to it. Increments Size.

{

 if (Cursor == Head)

 { //insert new head

 Head = new ListElement; //connect new element to Head

 assert(Head);

 Head->Successor = Cursor; //connect it to rest of list

 Cursor = Head; //reset Cursor

 }

 else

 {

 //insert between Prev and Cursor

 //allocate new node and connect to predecessor

 Prev->Successor = new ListElement;

 assert(Prev->Successor);

 //link new element to rest of list

 Prev->Successor->Successor = Cursor;

 //reset Cursor

 Cursor = Prev->Successor;

 }

 Cursor->Risk = risk;

 Cursor->Key = key;

 Cursor->Category = category;

 Size++;

 if (AtEnd()) //update Rear if new node at end

 Rear = Cursor;

}

LinkList::LinkList()

//Default constructor.

{

 Head = NULL;

 Prev = NULL;

 Cursor = NULL;

 Rear = NULL;

 Size = 0;

}

void LinkList::InsertFromUser(LinkList &k)

{

char input[320];

 string risk = " ", category = " ";

 int probability, impact;

 clrscr();

 cout << "When prompted please enter a risk, category, impact, and a probability\n";

 cout << "\nEnter your risk factor please: ";

gets(input);

 risk = input;

 cout << endl;

 cout << "(SS) Staff size and experience (BI) Business impact" << endl;

 cout << "(DE) Development environment (PS) Product size" << endl;

 cout << "(CC) Customer characteristics (PD) Process definition" <<endl;

 cout << "(TB) Technology to be built (TI) Technical issues" << endl;

 cout << "\nEnter the 2 letter category your risk belongs to please: ";

 cin >> category;

 cout << "\nEnter the probability that the risk will occur(1-99): ";

 cin >> probability;

 if(probability < 1 || probability > 99)

while(probability < 1 || probability > 99)

{

 clrscr();

 cout << "\nPlease enter a probabilty between 1 and 99: ";

 cin >> probability;

 }

 cout << "\nEnter the impact that the risk will have";

 cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

 cout << " 4 for Negligible: ";

 cin >> impact;

 if(impact < 1 || impact > 4)

while(impact < 1 || impact > 4)

{

 clrscr();

 cout << "\nEnter the impact that the risk will have please: ";

cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

cout << "4 for Negligible: ";

cin >> impact;

 }

 k.InsertInOrder(x, risk, category, probability, impact);

 x++;

 }

void LinkList::RiskInputFromDB(LinkList &k)

{

 int num = 0, impact, probability;

 string risk = ".." , category = " ";

 bool Success = true;

 char verify = 'n'; // verifies correct risks is entered

 clrscr();

 cout << "You may enter as many risks as you like!" << endl ;

 cout << "To quit enter (-1) when prompted\n";

 cout << "\nTo return to main menu:\n";

 cout << "(1) enter (-1) when prompted\n";

 cout << "(2) enter (Y) at the next prompt\n\n";

 cout << "you will find the risk number(s) on the risk table web page\n";

 cout << "When prompted enter the number(key) to the corresponding risk\n";

 cout << "You will then be prompted to enter a probability and impact\n";

 cout << "for the risks that you entered... good luck\n\n";

 cout << "A impact table is located on the risk table builder website!\n\n";

 while(Success == true)

{

 verify = 'n';

 while(verify == 'n')

 {

Success = false;

cout << "Enter risk number(1-96) from the risk tables (-1) to quit: ";

cin >> num;

if(num == -1)

{

clrscr();

return;

}

if(num < 1 || num > 96)

{

while(num < 1 || num > 96)

{

cout << "\n\nThe risk number must be a number from (1 to 300)";

cout << "\nplease enter a new risk number: ";

cin >> num;

}

}

this->RetrieveRisk(risk, num , category, Success);

cout << "\n" <<risk<< endl << "Is this the correct risk (y/n)? ";

cin >> verify;

 }

 this->InitCursor();

 cout << "\nEnter the probability that the risk will occur(1 - 99): ";

 cin >> probability;

 if(probability < 1 || probability > 99)

{

 while(probability < 1 || probability > 99)

{

 cout << "\n\nProbability must be an integer between 1 and 99";

 cout << "\nPlease enter a new probability: ";

 cin >> probability;

 }

 }

 cout << "\nEnter the impact that the risk will have please?\n";

 cout << "A impact table is located on the risk table builder website!\n";

 cout << "\n1 for Catastrophic, 2 for Critical,\n3 for Marginal,";

 cout << "4 for Negligible: ";

 cin >> impact;

 if(impact < 1 || impact > 4)

{

 while(impact < 1 || impact > 4)

{

 cout << "\n\nImpact must be an integer between 1 and 4";

 cout << "\nPlease enter a new probability: ";

 cout << "\n1 for Catastrophic, 2 for Critical, 3 for Marginal, ";

cout << "4 for Negligible: \n\nChoice... ";

 cin >> impact;

 }

 }

 k.InsertInOrder(x, risk, category, probability,impact);

 x++;

 clrscr();

 }

 clrscr();

 }

LinkList::~LinkList()

//Default destructor.

{

 ListElement* OldHead;

 //walk down list and return nodes to heap

 while(Head != NULL)

 {

 OldHead = Head;

 Head = Head->Successor;

 delete(OldHead);

 }

 Prev = NULL;

 Size = 0;

}

int LinkList::IsEmpty()

//Returns True is list is empty; otherwise returns False.

{

 return(Size == 0);

}

void LinkList::InitCursor()

//Sets Cursor to point to first list element.

//Pre : List is defined and non-empty.

//Post: Cursor set to first list element and Prev set to NULL,

// since first list element has no predecessor.

{

 Cursor = Head;

 Prev = NULL;

}

bool LinkList::AtEnd()

//Returns True if Cursor is NULL or is pointing to the last

//list element; otherwise returns False.

{

 int EndList;

 if(Cursor == NULL) //empty list

 EndList = true;

 else if (Cursor->Successor == NULL)

 EndList = true;

 else

 EndList = false;

 return(EndList);

}

void LinkList::Advance()

//Advances Cursor to next list element.

//Pre : Object initialized.

//Post: Cursor set to next list element, Prev points to

// former Cursor position.

{

 if(Cursor != NULL)

 {

 Prev = Cursor; //save Cursor value

 Cursor = Cursor->Successor; //advance Cursor position

 }

}

void LinkList::output()

{

ofstream outData;

outData.open("RTable.txt");

ListElement *start = Head;

outData << " Key\tRisk\n";

outData<< " --";

outData << "----------\n";

while(start != NULL)

{

 outData << " " << start->Key << "\t" << start->Risk << endl<<endl;

 start = start->Successor;

 }

start = Head;

outData << endl << endl<< endl;

outData << " Key\tCategory\tImpact\tProbability\t\tRMMM\n";

outData << " ---\n";

while(start != NULL)

{

outData << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

outData << start->Impact << "\t\t " << start->Probability << endl;

 start = start->Successor;

 }

outData << endl << "Categories for impacts\n";

outData << "----------------------\n";

outData << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n";

outData << "(4) - Negligible";

outData << endl << endl << endl;

outData << "RMMM - Risk Monitoring, Management, and Mitigation \n";

outData << "Place an x in that column if you think the risk needs";

outData << " to be monitored";

}

void LinkList::print()

{

ListElement *start = Head;

clrscr();

cout << " Key\tRisk\n";

cout << " --- ---";

cout << "----------\n";

while(start != NULL)

{

 cout << " " << start->Key << "\t" << start->Risk << endl << endl;

 start = start->Successor;

 }

start = Head;

cout << endl;

cout << " Key\tCategory\tImpact\tProbability\tRMMM\n";

cout << " ---\n";

while(start != NULL)

{

 cout << " " << start->Key << "\t " <<setw(2)<<start->Category <<"\t\t ";

 cout << start->Impact << "\t " << start->Probability << endl;

 start = start->Successor;

 }

cout << endl << "Categories for impacts\n";

cout << "----------------------\n";

cout << "(1) - Catastrophic\n(2) - Critical\n(3) - Marginal\n(4) - Negligible";

cout << endl << endl << endl;

cout << "RMMM - Risk Monitoring, Management, and Mitigation \n";

cout << "Place an x in that column if you think the risk needs to be monitored";

}

void LinkList::RetrieveRisk(string &risk, int key,

 string &category, bool &Success)

//Retrieves linked list element pointed to by Cursor.

//Pre : Linked list is initialized.

//Post: Returns through El the list element pointed to by

// Cursor and sets Success to True or sets Success to

// False if Cursor is NULL.

{

if(Cursor == NULL)

 Success = false;

else

{

 while(! this->AtEnd())

{

 if(Cursor->Key == key)

{

 risk = Cursor->Risk;

 category = Cursor->Category;

Success = true;

 return;

}

 this->Advance();

 }

}

 }

void MakeDataBase(LinkList &l)

{

l.Insert("greg and nicole" , 9999, "no");

l.Insert("Personnel shortfalls",1,"TP");

l.Insert("Unrealistic schedules and budgets",2,"TP");

l.Insert("Developing the wrong software functions",3,"TP");

l.Insert("Developing the wrong user interface",4,"TP");

l.Insert("Gold plating",5,"TP");

l.Insert("Continuing stream of requirements changes",5,"TP");

l.Insert("Shortfalls in externally furnished components",6,"TP");

l.Insert("Shortfalls in externally produced tasks",7,"TP");

l.Insert("Real-Time performance shortfalls",8,"TP");

l.Insert("Straining computer-science capabilities",9,"TP");

l.Insert("Estimated size of project in LOC or FP" , 11, "PS");

l.Insert("Degree of confidence in estimated size estimate" , 12, "PS");

l.Insert("Estimated size of product in number of programs, files, transactions" , 13, "PS");

l.Insert("% deviation in size of product from average for previous products", 14, "PS");

l.Insert("Size of database created or used by product", 15, "PS");

l.Insert("Number of users of the product", 16, "PS");

l.Insert("# of projected changes to the environment for the product, before or after delivery", 17, "PS");

l.Insert("Amount of reused software",18, "PS");

l.Insert("Effect of this product on company revenue", 19, "BI");

l.Insert("Visibility of this product by senior management", 20, "BI");

l.Insert("Reasonableness of delivery deadlines", 21, "BI");

l.Insert("# of customers who will use this product and the consistancy of their needs", 22, "BI");

l.Insert("# of other products/systems with which this product must be interoperable",23,"BI");

l.Insert("Sophistication of end users", 24, "BI");

l.Insert("Amount/quality of documents to be delivered to the customer",25,"BI");

l.Insert("Governmental constraints on the construction of the product",26,"BI");

l.Insert("Costs associated with late delivery",27,"BI");

l.Insert("Costs associated with a defective product",28,"BI");

l.Insert("Have you worked with the customer in the past",29 , "CC");

l.Insert("Does the cust. have a solid idea of what is required and written it down", 30 , "CC");

l.Insert("Will cust. have formal requirements meetings to ID project scope",31, "CC");

l.Insert("Cust. willing to establish rapid communications links with the developer",32, "CC");

l.Insert("Is the customer willing to participate in reviews",33, "CC");

l.Insert("Is the customer technically sophisticated in the product area",34,"CC");

l.Insert("Is the customer willing to let you do your job", 35, "CC");

l.Insert("Does the customer understand the software engineering process",36, "CC");

l.Insert("Does senior management support a written policy statement with regards to standard porcess",37, "PD");

l.Insert("Has your org. developed a written description of the software process for software developement",38,"PD");

l.Insert("Staff members signed-up on the software process and willing to use it",39,"PD");

l.Insert("Is the software process used for other porjects",40,"PD");

l.Insert("Has your org developed or acquired a series of SW Eng training courses",41,"PD");

l.Insert("Are published SW Eng. standards provided for everyone",42,"PD");

l.Insert("Has document outlines and examples been developed for all deliverables",43,"PD");

l.Insert("Are formal tech. reviews of requirements spec, design, and code conducted regularly",44,"PD");

l.Insert("Are formal tech reviews of test procedures conducted regularly",45,"PD");

l.Insert("Are the results of each formal tech review documented",46,"PD");

l.Insert("Is there a mech. for ensuring that work conducted on a project conforms with standards",47,"PD");

l.Insert("Is configuration management used to maintain consistency among systems/SW requirements",48,"PD");

l.Insert("Is a mechanism used for controlling changes to customer requirements that impact the sw",49,"PD");

l.Insert("Is there a documented statement of work,SW req spec, and sw development plan for each subcontract",50,"PD");

l.Insert("Is there a procedure followed for tracking and reviewing the performance of subcontractors",51,"PD");

l.Insert("Are facilitated appl spec techniques used to aid in comm.. between cust and developer",52,"TI");

l.Insert("Are specific methods used for software analysis",53,"TI");

l.Insert("Do you use specific method for data and architecture designs",54,"TI");

l.Insert("Is more then 90% of your code written in a high order language",55,"TI");

l.Insert("Are specific conventions for code documentation defined and used",56,"TI");

l.Insert("Do you use a specific method for test case design",57,"TI");

l.Insert("Are SW tools used to support SW planning and tracking activities",58,"TI");

l.Insert("Are configuration management tools used to control and track change activity",59,"TI");

l.Insert("Are SW tools used to support the SW analysis and design process",60,"TI");

l.Insert("Are tools used to create software prototypes",61,"TI");

l.Insert("Are software tools used to support the testing process",62,"TI");

l.Insert("Are SW tools used to support production and management of documentation",63,"TI");

l.Insert("Are quality metrics collected for all software projects",64,"TI");

l.Insert("Are productivity metrics collected for all SW projects",65,"TI");

l.Insert("Is the technology to be built new to your company",66,"TB");

l.Insert("Do cust. requirements demand the creation of new algorithms or technology",67,"TB");

l.Insert("Does the sw interface with new or unproven technology",68,"TB");

l.Insert("Does the sw interface with a DB system whose function and performance has not been proven",69,"TB");

l.Insert("Does the sw interface with vendor supplied sw products that are unproven",70,"TB");

l.Insert("Is a specialized used interface demanded by product requirements",71,"TB");

l.Insert("Do requirements demand that new components be built unlike any previously built by your company",72,"TB");

l.Insert("Do requirements demand the use of unconventional software",73,"TB");

l.Insert("Do req. demand unconventional sw methods, AI and artificial neural networks etc",74,"TB");

l.Insert("do requirements put excessive performance constraints on the product",75,"TB");

l.Insert("Is the customer uncertain that the functionality requested is \"do-able\"",76,"TB");

l.Insert("Is a software project management tool available",77,"DE");

l.Insert("Is a software process management tool available",78,"DE");

l.Insert("Are tools for analysis and design available",79,"DE");

l.Insert("Do analysis and design tools deliver appropriate methods for the product",80,"DE");

l.Insert("Are compilers or code generators available and appropriate for the product",81,"DE");

l.Insert("Are testing tools available and appropriate for the product to be built",82,"DE");

l.Insert("Are software configuration management tools available",83,"DE");

l.Insert("Does the environment make use of a DB or a repository",84,"DE");

l.Insert("Are all software tools integrated with one another",85,"DE");

l.Insert("Have members of the project teams received training in each of the sw tools",86,"DE");

l.Insert("Are local experts available to answer questions about the tools",87,"DE");

l.Insert("Is on-line help and documentation for the tools adequate",88,"DE");

l.Insert("Are the best people available",89,"SS");

l.Insert("Do the people have the right combination of skills",90,"SS");

l.Insert("Are enough people available",91,"SS");

l.Insert("Are staff committed for entire duration of the project",92,"SS");

l.Insert("Will some staff be working only part time on this project",93,"SS");

l.Insert("Do staff have the right expectations about the job at hand",94,"SS");

l.Insert("Have staff received the necessary training",95,"SS");

l.Insert("Will turnover among staff be low enough to allow continuity",96,"SS");

}

void LinkList::sort()

{

 ListElement *temp = new ListElement;

 assert(temp);

 for(ListElement *start = Head; start->Successor != NULL;

start = start->Successor)

 for(ListElement *traverse = start->Successor; traverse != NULL;

traverse = traverse->Successor)

{

 if(traverse->Impact < start->Impact)

{

 temp->Risk = traverse->Risk;

 temp->Probability = traverse->Probability;

 temp->Impact = traverse->Impact;

 temp->Category = traverse->Category;

traverse->Risk = start->Risk;

 traverse->Probability = start->Probability;

 traverse->Impact = start->Impact;

 traverse->Category = start->Category;

 start->Risk = temp->Risk;

 start->Probability = temp->Probability;

 start->Impact = temp->Impact;

 start->Category = temp->Category;

 } // end if

 }// end for loop

 }//end of function

int main()

{

char choice = 'y';

char finished = 'y';

int op;

LinkList l;

LinkList k;

MakeDataBase(l);

while(finished == 'y')

{

 clrscr();

 cout << "Program written by Chrispen, Kutcher,and Nugent\n";

 cout << "University of Michigan-Dearborn 1999\n";

 cout << "For more info email AfNugent@hotmail.com \n\n";

 cout << "Help files located on Risk table builder web page!\n";

 cout << "Step by step instructions are on the web page also!\n\n";

 cout << "When prompted \"Back to the start (y/n):\" ";

 cout << "\nEnter yes (Y) to return to this point";

 cout << "\nEnter no (N) to exit the system\n";

 cout << "\nPlease pick an option (1 or 2)";

 cout << "\n(1) Enter from risk tables provided? ";

 cout << "\n(2) Enter your own risks? ";

 cin >> op;

 switch(op)

{

 case 1:

l.RiskInputFromDB(k);

break;

 case 2:

while(choice == 'y')

{

l.InsertFromUser(k);

cout << "\nWould you like to enter another risk (y/n): ";

cin >> choice;

cout << endl;

clrscr();

}

 break;

 default: cout << "try again...";

 }

 cout << "If you have completed entering risk factors enter (n)";

 cout << " to exit program\n";

 cout << "or enter (y) to return to the main menu!\n";

 cout << "\nBack to the start (y/n)... ";

 cin >> finished;

 }

clrscr();

k.sort();

k.print();

k.output();

cin >> finished;

return 0;

}

Design testing

Testing Issues

Black-Box as well as White-Box testing will be discussed in this section. White-Box testing is used to test that (1) independent paths within a module have been used at least once, otherwise they are useless; (2) all logical decisions have exercised both true and false decisions; (3) all loops are executed within their boundaries as well as their operational bounds; (4) internal control structures are valid. On the other hand Black-Box testing is used to test for: (1) incorrect or missing functions (2) interface errors (3) errors in data structures or external database access (4) performance errors, and (5) initialization and termination errors. The test cases that we are deriving are for a Risk Table Builder. First, we’ll discuss the White-Box testing classes.

Classes of Tests

White-Box Testing

· Basis Path Testing (This defines the basis set of execution paths within the program. This involves developing test cases that will test that every statement is executed in the program at least once during these tests. Before finding the basis set a program graph must be presented. Each type of construct has a corresponding graph of it’s own, then these are put together to come up with the basis set. These construct graphs are as follows:

[image: image108.wmf]

6

b

[image: image109.wmf]

6

b

[image: image110.wmf]

6

b

[image: image111.wmf]

6

b

[image: image112.wmf]

6

b

Theses constructs can then be combined to describe each procedure and/or function within the program. It is from these constructs that test cases are derived. This is done thru a series of steps.

Step 1:
Create a flow graph from each function or procedure.

Step 2:
Determine the cyclomatic complexity of the flow graph developed in step1.

Step 3:

Indicate the specific paths that are linearly independent. The number of

paths found should equal the cyclomatic complexity from step 2.

Step 4:
Prepare a test case for each of the paths determined in step 3.

Note: A useful tool in completing the above steps is a graph matrix.

· Condition Testing (This type of testing tests the logical conditions for each module in which they exist. Possible types of errors corresponding to conditions include: (a) Boolean operator (boolean operators consist of the following: OR , AND , and NOT). (b) Boolean variable (T or F). (c) Boolean parenthesis (d) Relational operator (relational operators consist of the following: <, >, =, != (not-equal), (, and, (. There are different ways in which to test conditions, such as, Branch testing, Domain testing, Error sensitivity, and BRO (branch and relational operator) testing.

· Loop Testing (Four different classes of loops can be tested exclusively on the validity of their constructs: simple loops, concatenated loops, nested loops, and unstructured loops.

 Simple loop testing involves: (1) skipping the entire loop (2) passing through the loop

 only once (3) passing through the loop twice (4) passing through the loop m

 times, where m < n (n is max number of allowable passes) (5) n-1, n+1 passes through

 the loop.

 Nested loop testing involves the same principles as the simple loop testing. However,

 this would involve an impractical amount of tests. One approach is to follow these

 steps: (a) starting with innermost loops, set all other loops to minimal values. (b)

 conduct the tests listed under simple loop testing. (c) work outward conducting tests

 for subsequent loops. (d) continue until all loops are done.

 Concatenated loop testing: if loops are independent of each other then use simple loop

 testing procedures. If not then use nested loop testing procedures.

 Unstructured loops should be redefined to fit constructs of language and the use

 simple, nested or concatenated loop testing.

These tests are used to answer the following questions:

· How is functional validity tested?

· What classes of input will make good test cases?

· Is the system particularly sensitive to certain input values?

· How are the boundaries of a data class isolated?

· What data rates and data volume can the system tolerate?

· What effect will specific combinations of data have on system operation?

The tests that we have devised for this system are as follows:

System (

The system itself consists of two separate entities, the web user interface and the executable program. First, we’ll discuss the web user interface. There are nine links whose main function is to pop up a list of possible risks with a key number to identify each individual risk. The only test that can be performed is to click on the link and make sure it opens a list of risks. There is one link that gives detailed step-by-step instructions on how to use the risk table-building tool. Again the only way to test this link is to click on it and make sure it opens a window with these step-by-step instructions. There are also a number of other various links. The Help Files link gives detailed help for various problems that the user could face. This will be tested the same as the above two tests. The Impact Table gives the user help in determining the impact for a particular risk, which they have chosen. Clicking on it to make sure it is active will also test this. The three links labeled as samples will be tested in the same manner as all the above tests since they too are just files that the user can look at. All the above links have served only the purpose of giving the user useful information only in order to use the downloadable program. The last link is there so that the user may download the program that coincides with the user interface. When the user clicks on this they will be able to download the file to a specified directory and then run it from there. The final piece of the user interface is the search field. The user should be able to type in a word or words, push the submit button and the program will show them a number of possible risks for their table. If multiple words are entered then the search, will not only look for any combination of those words occurring within a risk but it will also look for them separately. If the user wants to search again for different risks then they may either delete the search field by hand or push the reset button, which will clear the screen for them. Next, we will describe the Black-Box tests for the executable program. The user will be prompted to input whether they are inputting a risk that they have supplied or have taken from one of the pop-up menus on the web interface. If the user selects a risk from the table then they are prompted for the appropriate risk number associated with it. The user may only input a number between 1 and 300 since that is the total number of risks provided in the tables or a -1 to quit. If the individual types in a number greater than 300 or less than 1 then they will be prompted to re-enter the number because the number they typed is invalid. They will be continuously prompted if they continue to input invalid numbers. The system will absolutely not allow them to input anything outside of the appropriate range. When the user finishes that they will be prompted to enter a probability for which the risk will occur. This number must be within the range of 1 to 99. If the user inputs any number outside of this range, again they will be re-prompted to input an acceptable value. They will not be allowed to move on until they input a valid value. Next, the user is prompted to input the number associated with the impact of the risk: 1 for catastrophic, 2 for critical, 3 for marginal, and 4 for negligible. These are the only values allowed for this question. If the user does not input one of these they will be prompted until they do. If the user chooses to input their own risk they will be asked to type in the name of it. This name must be less than 320 characters long. If it is longer then the name of the risk input by the user will be chopped of to reflect only the first 320 characters entered. The user is then asked what the category of the risk entered should be. The user is then prompted for the probability, and impact of the risk using the same parameters, limitations, and tests as the previous example.

GUI (

There are several ways in which the GUI (Graphical User Interface) may be tested. Some possible tests are:

· Is all data content contained within the window properly addressable with a mouse

function keys, directional arrows, and the keyboard?

· Are all functions that relate to the window available when needed?

· Are all relevant pull-down menus, tool bars, scroll bars, dialog boxes, buttons, icons, and other controls available and properly displayed for the window?

· Is all the information needed from the user accessible from the interface tools?

· Does the window close properly?

· Do all tools on the interface serve a function?

· Were any functions not represented by a tool?, Is the appropriate menu bar displayed in the appropriate context?

· Do interface tools work properly?

· Do the cursor, processing indicator, and pointer properly change as different operations are invoked?

· Is alphanumeric data entry properly input into the system?

· Is invalid data properly recognized?

(Pressman 1997)

*Please see appendix for all GUI tests considered.

Documentation and Help (

Documentation and help files allow naive users to use the system. If the documentation and help files of the system are inadequate or non-existent then unexpected and/or unexplained errors cannot be diagnosed. Some possible tests include:

· Does the documentation accurately describe how to accomplish each mode of use?

· Are examples accurate?

· Are all error codes described within the documentation?

(Pressman 1997)

*Please see appendix for a complete list of the documentation/help tests considered.

Expected Software Responses

In order for any test to be of use there must be an expected response. If the final test response matches the expected test response then the test was successful. If the final test response does not match the expected test response then the test was unsuccessful. Using the assumption that all other components of the system are not a factor in the test being accomplished at any given time unless otherwise stated.

White-Box testing
Procedure: AtEnd

Purpose: To determine whether there is a list that new elements can be added to.

Step 1:

1. if list is empty

2. then return true

set return value to true;

3. else if list is at the end

4. then return true

set return value to true;

5. else set the return value to false;

6a. end if

6b. end if

[image: image113.wmf]

6

b

7. end

Step 2:

Number of conditional statements = 2 + 1 = 3 (Computational Complexity). So the number of paths is three.

Step 3:

Path 1:1-2-6b-7

Path 2: 1-3-4-6a-6b-7

Path 3: 1-3-5-6a-6b-7

Step 4:

Path 1 test:
· list is empty: true

Expected results:

· will set return value of AtEnd to true

Path 2 test:
· list is at the end: true

Expected results:

· will set return value of AtEnd to true

Path 3 test:

· list is at the end: false

Expected results:

· will set return value of AtEnd to false.

Procedure: InsertInOrder

Purpose: Insert elements into the linked list in order

Step 1:

14. create a new ListElement and a pointer to it;

15. assert the memory was set aside;

16. store key in Key field;

store category in Category field;

store risk in risk in Risk field;

store impact in Impact field;

store probability in Probability field;

17. set new ListElement successor to NULL:

18. if new list or 1st ListElement probability is < new ListElement probability

19. then set new ListElement successor = Head;

set Head = new ListElement pointer;

set Cursor = Head;

20. else create a ListElement pointer named current

8. while current != NULL and current successor probability is < new ListElement probability

current = current successor

 9. end while

start successor = current successor;

current successor = start;

10. end if

11. increment the variable size;

12. if the ListElement was inserted in the last position

13. then set Rear = start

14. end if

15. end

[image: image114.wmf]

6

b

Step 2:
Number of conditional statements = 5 + 1 = 6. (computational complexity). So the number of paths is six.

Step 3:
Path 1: 1-2-3-4-5-6-10-11-12-13-14-15

Path 2: 1-2-3-4-5-6-10-11-12

Path 3: 1-2-3-4-5-7-8-9-8-10-11-12-13-14-15

Path 4: 1-2-3-4-5-7-8-10-11-12-13-14-15

Path 5: 1-2-3-4-5-7-8-10-11-12

Path 6: 1-2-3-4-5-7-8-9-8-10-11-12

Step 4:

Path 1 test case:
· new list or 1st ListElement probability is < new ListElement probability: (true,true), (true,false), or (false,true)

· the ListElement was inserted in the last position: true

Expected results:

· creates a new list element

· sets memory aside

· stores key, category, risk, impact, and probability in appropriate fields

· sets new element successor equal to head

· sets head equal to new list element pointer

· sets cursor equal to head

· sets rear equal to start.

Path 2 test case:

· new list or 1st ListElement probability is < new ListElement probability: (true,true), (true,false), or (false,true)

· ListElement was inserted in the last position: false

Expected results:

· creates a new list element

· sets memory aside

· stores key, category, risk, impact, and probability in appropriate fields

· sets new element successor equal to head

· sets head equal to new list element pointer

· sets cursor equal to head

Path 3 test case:

· new list or 1st ListElement probability is < new ListElement probability: (false,false)

· current != NULL and current successor probability is < new ListElement probability: (true,true)

· the ListElement was inserted in the last position: true

Expected results:

· creates a new list element

· sets memory aside

· stores key, category, risk, impact, and probability in appropriate fields

· creates a list element pointer named current

· set the current pointer equal to the it’s successor

· set start successor equal to current successor

· set current successor equal to start

· increment the variable size

· sets rear equal to start

Path 4 test case:

· new list or 1st ListElement probability is < new ListElement probability: (false,false)

· current != NULL and current successor probability is < new ListElement probability: (false,false), (false,true), or (true,false)

· the ListElement was inserted in the last position: true

Expected results:

· creates a new list element

· sets memory aside

· stores key, category, risk, impact, and probability in appropriate fields

· creates a list element pointer named current

· set start successor equal to current successor

· set current successor equal to start

· increment the variable size

· sets rear equal to start

Path 5 test case:

· new list or 1st ListElement probability is < new ListElement probability: (false,false)

· current != NULL and current successor probability is < new ListElement probability: (false,false), (false,true), or (true,false)

· the ListElement was inserted in the last position: false

Expected results:

· creates a new list element

· sets memory aside

· stores key, category, risk, impact, and probability in appropriate fields

· creates a list element pointer named current

· set start successor equal to current successor

· set current successor equal to start

· increment the variable size

Path 6 test case:

· new list or 1st ListElement probability is < new ListElement probability: (false,false)

· current != NULL and current successor probability is < new ListElement probability: (true,true)

· the ListElement was inserted in the last position: false

Expected results:

· creates a new list element

· sets memory aside; stores key, category, risk, impact, and probability in appropriate fields

· creates a list element pointer named current

· set the current pointer equal to the it’s successor

· set start successor equal to current successor

· set current successor equal to start

· increment the variable size

Procedure: Advance

Purpose: To advance the cursor

Step 1:

5. if Cursor != NULL

6. Then move the pointers Prev and Cursor up one ListElement

set the pointer Prev = to the pointer Cursor

set the pointer Cursor = to Cursors successor

7. end if

8. end

[image: image115.wmf]

6

b

[image: image116.wmf]

6

b

 Step 2:

Number of conditional statements = 1 + 1 = 2 (computational complexity). So the number of paths is two.

Step 3:
Path 1: 1-4

Path 2: 1-2-3-4

Step 4:

Path 1 test case:

· Cursor != NULL: false

Expected results:

· end if statement, nothing happens.

Path 2 test case:

· Cursor != NULL: true

Expected results:

· The prev pointer and cursor pointer will point to next element in the list. This is done by pointing the prev pointer to the cursor pointer and pointing the cursor pointer to it’s successor.

Procedure: Insert

Purpose: To insert new elements into the list.

Step 1:

13.
if cursor is = to head

14. then insert the new ListElement

create a new ListElement and set head = to it;

assert that memory was set aside;

set head successor = cursor;

set cursor = head;

15. else insert the new ListElement between prev and cursor

create a new ListElement and set prev successor = to it;

assert that memory was set aside for the new node;

set prev successor successor = cursor;

set cursor = prev successor;

16. end if

17. set cursor Risk = risk;

18. set Cursor Key = key;

19. set Cursor Category = category;

20. increment size by one;

21. if the ListElement is the last node

22. then reset the pointer rear

 set rear = cursor;

23. end if

24. end

Step 2:

Number of conditional statements = 2 + 1 = 3 (computational complexity). So the number of paths is three.

Step 3:

Path 1: 1-2-4-5-6-7-8-12

Path 2: 1-3-4-5-6-7-8-9-10-11-12

Path 3: 1-3-4-5-6-7-8-9-12

Step 4:

Path 1 test case:

· Cursor = = head: true

Expected results:

· insert the new list element

· create a new list element and set head equal to it

· set memory aside

· set head successor equal to cursor

· set cursor equal to head

· set cursor risk equal to risk

· set cursor key equal to key

· set cursor category equal to category

· increment size by one

Path 2 test case:

· Cursor = = head: false
· list element is the last node: true

Expected results:

· set new list element between prev and cursor pointers

· create a new list element and set prev successor equal to it

· set memory aside for the new node

· set prev successor successor equal to cursor

· set cursor equal to prev successor

· reset the pointer rear

· set rear equal to cursor

Path 3 test case:

· Cursor = = head: false
· list element is the last node: false

Expected results:

· set new list element between prev and cursor pointers

· create a new list element and set prev successor equal to it

· set memory aside for the new node

· set prev successor successor equal to cursor

· set cursor equal to prev successor

Procedure: RetrieveRisk

Purpose: Retrieves the individual risks.

Step 1:

12. if there is no link list

13. then set success = false;

14. else iterate the list until key is found

15. while not at the end of the list

16. if key is equal to Key

17. then return the correct values

 set risk = cursor risk;

 set category = cursor category;

 set boolean parameter to true;

 return;

18. end if

19. call advance;

20. [image: image117.wmf]

6

b

end while

21. end if

22. end

Step 2:

Number of conditional statements = 3 + 1 = 4 (computational complexity). So the number of paths is four.

Step 3:

Path 1: 1-2

Path 2: 1-3-4-5-6-7-8-9-4-10-11

Path 3: 1-3-4-5-7-8-9-4-10-11

Path 4 : 1-3-4-10-11

Step 4:

Path 1 test case:
· there is no link list: true

Expected results:

· sets success equal false

Path 2 test case:
· there is no link list: false

· not at the end of the list: true

· the key is equal to key: true

Expected results:

· the list will be iterated until the key is found

· return the correct values

· sets risk equal to cursor risk

· sets category equal to cursor category

· sets boolean parameter to true

· calls advance

Path 3 test case:
· there is no link list: false

· not at the end of the list: true

· the key is equal to key: false

Expected results:

· the list will be iterated until the key is found

· calls advance

Path 4 test case:
· there is no link list: false

· not at the end of the list: false

Expected results:

· the list will be iterated until the key is found.

[image: image118.wmf]

6

b

Procedure: InitCursor

Purpose: To initialize the head and prev pointers

Step 1:

reset Cursor = to Head;

4. set Prev = to NULL;

5. end

Step 2:

Number of conditional statements = 0 + 1 = 1 (computational complexity). So the number of paths is one.

Step 3:
Path 1: 1-2-3

Step 4:
Path 1 test:
Expected results:

· resets cursor equal to head and sets prev equal to null

Procedure: MakeDataBase

[image: image119.wmf]

6

b

Purpose: To make the systems database.

Step 1:

3. insert data into systems data base

call insert with a risk , category, and key #1;

repeat the step above till key = 96;

4. end

Step 2:
Number of conditional statements = 0 + 1 = 1 (computational complexity). So the number of paths is one.

Step 3:
Path 1: 1-2

Step 4:
Path 1 test:
Expected results:

· call insert with a risk , category, and key #1

· repeat the step above till key equals 96

Procedure: InsertFromUser

Purpose: To take information from the user and inserts their riska into their own database.

Step 1:

1. types or variables used

create a char array of length 320;

create string variables risk and category and initialize them to “ “;

create integer variables probability and impact;

2. clear the users screen;

3. print asking the user for a risk factor;

4. read the risk factor

5. set the risk factored just read = to the string variable risk;

6. create space on the screen for the user using endl;

7. output to the screen the 8 categories;

8. print asking the user to input a category;

9. read the input using the variable category;

10. print asking the user to input a probability;

11. if the probability is < 1 or >99

12. then prompt the user for a new probability until they are in range

13. while the probability is < 1 or > 99

clear the screen;

print asking the user for new probability between 1 and 99;

read the new probability;

14. end while

15. end if

16. print asking for impact;

17. print categories of different impacts for the user;

18. read the impact;

19. if the impact is not between 1 and 4

20. then prompt the user for a new impact until they are in range

21. while impact is not between 1 and 4

clear the screen;

print asking for new impact;

print categories of impacts;

read the impact;

22. end while

23. end if

24. insert the users data into a database by calling InsertInOrder() function and passing the correct data as parameters

25. increment the global variable that represents the users key by one;

26. end

[image: image120.wmf]

6

b

Step 2:

Number of conditional statements = 3 + 1 = 4(computational complexity). So the number of paths is seven. In this function if condition 11 is true so must condition 13 and vice versa. Also, similarly, if function 19 is true then so must condition 21 and vice versa. This reduces the number of conditional statements to 3 although it seems as though 6 appear in the function.

Step 3:
Path 1: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26

Path 2: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-23-24-25-26

Path 3: 1-2-3-4-5-6-7-8-9-10-11-15-16-17-18-19-20-21-22-23-24-25

Path 4: 1-2-3-4-5-6-7-8-9-10-11-15-16-17-18-19-23-24-25

Step 4:

Path 1 test case:
· the probability is < 1 or >99: (true,true), (false,true), or (true,false)

· the impact is not between 1 and 4: true

Expected results:

· creates a char array of length 320

· creates a string variables risk and category and initializes them to “ “

· creates an integer variable probability and impact

· it then clears the users screen

· it asks the user for a risk factor

· it reads that risk factor

· it sets the risk factor just read equal to the string variable risk

· creates space on the screen for the user

· outputs the 8 categories to the screen

· asks the user to input a category

· reads the input using the variable category

· asks the user to input a probability

· prompts the user for a new probability until they are in the correct range

· asks for the impact of the risk

· prints the categories of different impacts for the user

· reads the impact

· prompts the user for a new impact until they are in the correct range

· clears the screen

· asks again for new impact

· prints the categories of the impacts

· reads the impact

· inserts the users data into a database by calling InsertInOrder() function and passing the correct data as parameters

· increments the global variable that represents the users key by one

Path 2 test case:

· the probability is < 1 or >99: (true,true), (false,true), or (true,false)

· the impact is not between 1 and 4: false

Expected results:

· creates a char array of length 320

· creates a string variables risk and category and initializes them to “ “

· creates an integer variable probability and impact

· it then clears the users screen

· it asks the user for a risk factor

· it reads that risk factor

· it sets the risk factor just read equal to the string variable risk

· creates space on the screen for the user

· outputs the 8 categories to the screen

· asks the user to input a category

· reads the input using the variable category

· asks the user to input a probability

· prompts the user for a new probability until they are in the correct range

· inserts the users data into a database by calling InsertInOrder() function and passing the correct data as parameters

· increments the global variable that represents the users key by one

Path 3 test case:

· the probability is < 1 or >99: (false,false)

· the impact is not between 1 and 4: true

Expected results:

· creates a char array of length 320

· creates a string variables risk and category and initializes them to “ “

· creates an integer variable probability and impact

· it then clears the users screen

· it asks the user for a risk factor

· it reads that risk factor

· it sets the risk factor just read equal to the string variable risk

· creates space on the screen for the user

· outputs the 8 categories to the screen

· asks the user to input a category

· reads the input using the variable category

· asks the user to input a probability

· asks for the impact of the risk

· prints the categories of different impacts for the user

· reads the impact

· prompts the user for a new impact until they are in the correct range

· clears the screen

· asks again for new impact

· prints the categories of the impacts

· reads the impact

· inserts the users data into a database by calling InsertInOrder() function and passing the correct data as parameters

· increments the global variable that represents the users key by one

Path 4 test case:

· the probability is < 1 or >99: (false,false)

· the impact is not between 1 and 4: false

Expected results:

· creates a char array of length 320

· creates a string variables risk and category and initializes them to “ “

· creates an integer variable probability and impact

· it then clears the users screen

· it asks the user for a risk factor

· it reads that risk factor

· it sets the risk factor just read equal to the string variable risk

· creates space on the screen for the user

· outputs the 8 categories to the screen

· asks the user to input a category

· reads the input using the variable category

· asks the user to input a probability

· asks for the impact of the risk

· prints the categories of different impacts for the user

· reads the impact

· inserts the users data into a database by calling InsertInOrder() function and passing the correct data as parameters

· increments the global variable that represents the users key by one

Procedure: sort

Purpose: Sorts the risks that the user has indicated they want input into there table.

Step 1:

11. create a new ListElement and make a pointer that points to it;

12. assert that memory was put aside for the new ListElement;

13. for comparison of first ListElement till last ListElement

14. for comparison of second ListElement till last ListElement

compare data in 1st ListElement to 2nd ListElement, 3rd ListElement etc;

compare data in 2nd ListElement to 3rd ListElement, 4th ListElement etc;

compare until last ListElement is reached;

15. if any ListElement impact data field is < 1st ListElement Impact data field

16. then swap the data in the ListElements

set temp risk data = 2nd ListElement risk data;

set temp probability data = 2nd ListElement probability data;

set temp impact data = 2nd ListElement impact data;

set temp category data = 2nd ListElement category data

set 2nd ListElement risk data = 3rd ListElement risk data;

set 2nd ListElement probability data = 3rd ListElement probability

set 2nd ListElement impact data = 3rd ListElement impact data;

set 2nd ListElement category data = 3rd ListElement category data;

set 3rd ListElement risk data = 2nd ListElement risk data;

set 3rd ListElement probability data = 2nd ListElement probability;

set 3rd ListElement impact data = 2nd ListElement impact data;

set 3rd ListElement category data = 2nd ListElement category data;

17. end if

18. end for

19. end for

20. end

[image: image121.wmf]

6

b

Step 2:

Number of conditional statements = 1 + 1 = 2 (computational complexity) So the number of paths is two.

Step 3:

Path 1: 1-2-3-4-5-6-7-8-9-10

Path 2: 1-2-3-4-5-8-9-10

Step 4:

Path 1 test case:

· Any ListElement impact data field is < 1st ListElement Impact data field: True

Expected results:

· Create a new ListElement and make a pointer that points to it.
· Verify that memory was put aside for it.
· compare data in 1st ListElement to 2nd ListElement, 3rd ListElement etc

· compare data in 2nd ListElement to 3rd ListElement, 4th ListElement etc

· compare until last ListElement is reached

· swap the data in the ListElements
· set temp risk data = 2nd ListElement risk data;

· set temp probability data = 2nd ListElement probability data;

· set temp impact data = 2nd ListElement impact data;

· set temp category data = 2nd ListElement category data

· set 2nd ListElement risk data = 3rd ListElement risk data;

· set 2nd ListElement probability data = 3rd ListElement probability

· set 2nd ListElement impact data = 3rd ListElement impact data;

· set 2nd ListElement category data = 3rd ListElement category data;

· set 3rd ListElement risk data = 2nd ListElement risk data;

· set 3rd ListElement probability data = 2nd ListElement probability;

· set 3rd ListElement impact data = 2nd ListElement impact data;

· set 3rd ListElement category data = 2nd ListElement category data;

Path 2 test case:

Any ListElement impact data field is < 1st ListElement Impact data field: False

Expected results:

· Create a new ListElement and make a pointer that points to it.
· Verify that memory was put aside for it.
· compare data in 1st ListElement to 2nd ListElement, 3rd ListElement etc

· compare data in 2nd ListElement to 3rd ListElement, 4th ListElement etc

· compare until last ListElement is reached

Procedure: RiskInputFromDB

Purpose: To input the pre-defined risks from the web-site into the users risk table.

Step 1:

39. types initialized to 0 or “ “ as appropriate

integers; num, impact, probability;

strings; risk, category;

bool success;

char verify

40. clear screen

41. build the user interface to interact with the user

42. while the user has more risks to enter

set Boolean variable verify to ‘n’ or true;

43. while the user finds the correct risks to match their key from the web

set success = false;

interact with the user to get their risk key;

read key;

44. if key is the quit signal

45. then return to the main program

clear the screen;

return;

46. end if

47. if the key is not between 1 and 96

48. then prompt for a new key until they get it right

49. while the key is not between 1 and 96

prompt the user to their mistake and ask for a new key;

read key;

50. end while

51. end if

52. retrieve the risk, key, category, and Boolean success from the system db

53. prompt the user to make sure their key matches the systems risk;

54. read verify

55. end while

56. initialize the cursor using initCursor;

57. prompt the user for a probability;

58. read probability;

59. if the probability is not between 1 and 99

60. then prompt the user for a new probability repeatedly until corrected

61. while probability is not between 1 and 99

clear the screen;

prompt the user for a new probability;

read probability;

62. end while

63. end if

64. prompt the user for a risk impact;

65. provide the user with impact categories;

66. read impact;

67. if the impact is not between 1 and 4

68. then prompt repeatedly until correct impact entered

69. while impact ,1 or > 4

prompt for new impact;

read new impact;

70. end while

71. end if

[image: image122.wmf]

6

b

[image: image123.wmf]

6

b

[image: image124.wmf]

6

b

72. insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function;

73. increment the global variable that represents the users key;

74. clear the screen;

75. end while

end
Step 2:

Number of conditional statements = 10 + 1 = 11 (computational complexity) So the number of paths is eleven.

Step 3:

Path 1: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38

Path 2: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-33-34-35-36-37-38

Path 3: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-25-26-27-28-29-34-35-36-37-38

Path 4: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-25-26-27-28-29-30-31-33-34-35-36-37-38
Path 5: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-25-26-27-28-29-30-31-34-35-36-37-38
Path 6: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-26-27-28-29-30-31-34-35-36-37-38
Path 7: 1-2-3-4-5-6-7-8-9-10-11-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38

Path 8: 1-2-3-4-1-2-3-4-5-6-7-8-9-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38
Path 9: 1-2-3-4-5-6-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38
Path 10: 1-2-3-4-5-18-19-20-21-22-23-24-25-26-27-28-29-30-31-32-33-34-35-36-37-38

Path 11: 1-2-3-4-38

Step 4:

Path 1 test case:

· All conditions are true

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key;

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk;

· read verify

· initialize the cursor using initCursor;

· prompt the user for a probability;

· read probability;

· prompt the user for a new probability repeatedly until corrected

· clear the screen;

· prompt the user for a new probability;

· read probability;

· prompt the user for a risk impact;

· provide the user with impact categories;

· read impact;

· prompt repeatedly until correct impact entered

· prompt for new impact;

· read new impact;

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function;

· increment the global variable that represents the users key;

· clear the screen;

Path 2 test case:

· All conditions true except;

· impact 1 or > 4: false

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a new probability repeatedly until corrected

· clear the screen

· prompt the user for a new probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 3 test case:

· All conditions true except;

· impact between 1 and 4: False

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a new probability repeatedly until corrected

· clear the screen

· prompt the user for a new probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 4 test case:

· All conditions are true except;

· probability is between 1 and 99: False

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key;

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk;

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability;

· prompt the user for a new probability repeatedly until corrected

· prompt the user for a risk impact;

· provide the user with impact categories;

· read impact;

· prompt repeatedly until correct impact entered

· prompt for new impact;

· read new impact;

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function;

· increment the global variable that represents the users key;

· clear the screen;

Path 5 test case:

· All conditions are true except

· probability is between 1 and 99: False

· impact is between 1 or > 4: False

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key;

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk;

· read verify

· initialize the cursor using initCursor;

· prompt the user for a probability;

· read probability;

· prompt the user for a new probability repeatedly until corrected

· prompt the user for a risk impact;

· provide the user with impact categories;

· read impact;

· prompt repeatedly until correct impact entered

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function;

· increment the global variable that represents the users key;

· clear the screen;

Path 6 test case:

· All conditions are true; except

· probability is between 1 and 99: false

· Impact is 1 or >4: false

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key;

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 7 test case:

· All conditions are true; except

· The key is not between 1 and 96: false (this is for the while only)

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor;

· prompt the user for a probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 8 test case:

· All conditions are true; except

· Key is not between 1 and 96: false (this is for the if and the while, which may be true or false because if the if is false it never evaluates the while)

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 9 test case:

· All conditions are true; except

· Key is the quit signal: false

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· set success = false

· interact with the user to get their risk key

· read key

· prompt for a new key until they get it right

· prompt the user to their mistake and ask for a new key

· retrieve the risk, key, category, and Boolean success from the system db

· prompt the user to make sure their key matches the systems risk

· read verify

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a new probability repeatedly until corrected

· clear the screen

· prompt the user for a new probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· prompt for new impact

· read new impact

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

Path 10 test case:

· All conditions are true; except

· User finds the correct risks to match their key from the web: false

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

· initialize the cursor using initCursor

· prompt the user for a probability

· read probability

· prompt the user for a new probability repeatedly until corrected

· clear the screen

· prompt the user for a new probability

· read probability

· prompt the user for a risk impact

· provide the user with impact categories

· read impact

· prompt repeatedly until correct impact entered

· prompt for new impact

· read new impact

· insert the users data risk, key, category, probability, and impact into the users database using the InsertInOrder function

· increment the global variable that represents the users key

· clear the screen

 Path 11 test case:

· All conditions are true; except

· User has more risks to offer: false

Expected Results:

· Types initialized

· clear screen

· build the user interface to interact with the user

· set Boolean variable verify to ‘n’ or true

Procedure: output

Purpose: To output the users risks from the program to a file named RTable.txt.

Step 1:

23. create an object of ofstream and use that object to create/open a file named RTable.txt;

24. create a pointer to a ListElement named start and set it = to the pointer head;

25. create a header for the risk table include key and risk and send to text file;

26. while the list exists iterate the list

send to the txt file the key and risk from each ListElement;

set start = start successor;

27. end while

28. set start = to the pointer head;

29. create a header which includes key, category, impact, probability, and RMMM for the risk table itself and send it to the txt file;

30. while the list exists iterate the list

send to the text file the key, category, impact, and probability in a formatted output.

[image: image125.wmf]

6

b

Set start = start successor;

31. end while

32. send to the text file a explanation of impact abbreviations and helpful tips like what RMMM is for;

end

Step 2:
Number of conditional statements = 2 + 1 = 3 (computational complexity) So the number of paths is three.

Step 3:
Path 1: 1-2-3-4-5-6-7-8-9-10-11

Path 2:1-2-3-4-5-6-7-8-10-11

Path 3:1-2-3-4-6-7-8-10-11

Step 4:

Path 1 test case:

· All conditions are true

Expected Results:

· create an object of ofstream and use that object to create/open a file named RTable.txt

· create a pointer to a ListElement named start and set it = to the pointer head

· create a header for the risk table include key and risk and send to text file

· send to the txt file the key and risk from each ListElement

· set start = start successor

· set start = start successor

· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and send it to the txt file

· send to the text file the key, category, impact, and probability in a formatted output.

· Set start = start successor

· send to the text file a explanation of impact abbreviations and helpful tips like what RMMM is for

Path 2 test case:

· All conditions are true; except

· The second list exists: false

Expected Results:

· create an object of ofstream and use that object to create/open a file named RTable.txt

· create a pointer to a ListElement named start and set it = to the pointer head

· create a header for the risk table include key and risk and send to text file

· send to the txt file the key and risk from each ListElement

· set start = start successor

· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and send it to the txt file

· send to the text file a explanation of impact abbreviations and helpful tips like what RMMM is for

Path 3 test case:

· All conditions are true; except

· The first list exists: false
 Expected Results:

· create an object of ofstream and use that object to create/open a file named RTable.txt

· create a pointer to a ListElement named start and set it = to the pointer head

· create a header for the risk table include key and risk and send to text file

· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and send it to the txt file

· send to the text file the key, category, impact, and probability in a formatted output.

· Set start = start successor

· send to the text file a explanation of impact abbreviations and helpful tips like what RMMM is for

Procedure: print

Purpose: To print the users table from the Rtable.txt file.

Step 1:

1. create a pointer to a ListElement named start and set it = to the pointer head;

2. clear the screen.

3. create a header for the risk table include key and risk and print it to the screen;

4. while the list exists iterate the list

print to the screen the key and risk from a ListElement;

set start = start successor;

5. end while

6. set start = to the pointer head;

7. create a header which includes key, category, impact, probability, and RMMM for the risk table itself and print it to the screen;

8. while the list exists iterate the list

print the key, category, impact, and probability in a formatted output.

Set start = start successor;

9. end while

10. print to the screen a explanation of impact abbreviations and helpful tips like what RMMM is used for;

11. end

[image: image126.wmf]

6

b

Step 2:
Number of conditional statements = 2 + 1 = 3 (computational complexity) So the number of paths is three.

Step 3:
Path 1: 1-2-3-4-5-6-7-8-9-10-11

Path 2:1-2-3-4-5-6-7-8-10-11

Path 3:1-2-3-4-6-7-8-10-11

Step 4:

Path 1 test case:

· All conditions are true

Expected Results:

· create a pointer to a ListElement named start and set it = to the pointer head

· clear the screen

· create a header for the risk table include key and risk and print it to the screen
· print to the screen the key and risk from a ListElement

· set start = start successor

· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and print it to the screen

· print the key, category, impact, and probability in a formatted output

· Set start = start successor

· print to the screen an explanation of impact abbreviations and helpful tips like what RMMM is used for

Path 2 test case:

· All conditions are true; except

· The second list exists: false

Expected Results:

· create a pointer to a ListElement named start and set it = to the pointer head

· clear the screen

· create a header for the risk table include key and risk and print it to the screen
· print to the screen the key and risk from a ListElement

· set start = start successor

· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and print it to the screen

· print to the screen an explanation of impact abbreviations and helpful tips like what RMMM is used for

Path 3 test case:

· All conditions are true; except

· The first list exists: false
 Expected Results:

· create a pointer to a ListElement named start and set it = to the pointer head

· clear the screen

· create a header for the risk table include key and risk and print it to the screen
· set start = to the pointer head

· create a header which includes key, category, impact, probability, and RMMM for the risk table itself and print it to the screen

· print the key, category, impact, and probability in a formatted output

· Set start = start successor

· print to the screen an explanation of impact abbreviations and helpful tips like what RMMM is used for

Procedure: switch

Purpose: To find out whether the user is inputting anymore pre-defined risks or adding their own.

Step 1:

switch(op)

 {

 case 1:

 l.RiskInputFromDB(k);

 break;

 case 2:

 while(choice == 'y')

 {

 l.InsertFromUser(k);

 cout << "\nWould you like to enter another risk (y/n): ";

 cin >> choice;

 cout << endl;

 clrscr();

 }

 break;

 default: cout << "try again...";

[image: image127.wmf]

6

b

 }

Step 2:
Number of conditional statements = 2 + 1 = 3 (computational complexity) So the number of paths is three.

Step 3:
Path 1: 1-5

Path 2: 2-3-5

Path 3: 2-4-5

Step 4:

Path 1 test case:

· case 1: true

Expected Results:

· call RiskInputFromDB

 Path 2 test case:

· case 2: true

· choice =1 ‘y’: true

Expected Results:

· call InsertFromUser

· output the statement “Would you like to enter another risk(y/n):”

· inputs choice

· clears screen

Path 2 test case:

· case 2: true

· choice =1 ‘y’: false

Expected Results:

· prompts the user to “try again…”

Main()

Purpose: To create variables, linked lists, call functions and primarily run the program.

Step 1:

1. [image: image128.wmf]

6

b

create chars and int

2. create link lists l and k

3. call MakeDataBase(l)

4. output user prompt

5. call switch

6. call k.print()

end
Step 2:
Number of conditional statements = 0 + 1 = 1 (computational complexity) So the number of paths is one.

Step 3:
Path 1: 1-2-3-4-5-6-7

Step 4:
Path 2 test:

· No conditions

Expected Results:

· Create chars and int

· Create link lists l and k

· Call MakeDataBase

· Output user prompt

· Call switch

· Call k.print

B. Black-Box testing

Systems

 Web interface: For each risk category link on the web interface a pop-up menu with all those types of risks will be displayed. For the step-by-step directions link a pop-up window displaying the step-by-step directions on how to use the downloadable program as well combined with the web interface will be displayed. For each of the sample links a pop-up window will display these samples. For the help files link a pop-up window will display all the help files the user may need to operate and use both the program and the interface. For the search field, the user should be able to type in a word or words and the results will be displayed by each word typed in and by the combination of them both.

 Program: The user will be able to either type in their own risk or use the web interface links to access existing risks. They will then be able to input a character string of up to 320 characters long including spaces if they choose to put in their own or they will be able to input a number between 1 and 300 identifying the risks provided. If they choose to input their own they will also have to supply the category for which the risk belongs. Otherwise for both they will have to input a probability with arrange from 1 to 99 and then input the impact using a range fro 1 to 4. When the individual is finished choosing risks the program will output the risk table.

GUI’s
Window ((1) All data contained within the window is able to be addressed by the mouse, function keys, directional arrows, and the keyboard. (2) All functions
within the window are available as needed. (3) Proper display of pull-down menus, tool bars, scroll bars, dialog boxes, buttons, icons, and other controls are in the window. (4) All information needed from the user

is accessible from the interface tools. (5) The window can be closed. (6) The above responses can be combined as a whole for the GUI window. If any are unmet then the GUI window is unsuccessful and must be corrected.

· Tools ((1) Any menu bars displayed are displayed in the appropriate context. (2) All tools displayed work properly. (3) All tools on the interface do have an associated function. (4) The cursor, processing indicator, and pointer properly change as different operations are invoked. (5) The above responses can be combined as a whole for the GUI tools. If any are unmet then the GUI tools are unsuccessful and must be corrected.

· Data Entry ((1) Alphanumeric data entry is properly input into the system. (2) Invalid data is properly recognized. (3) The above responses can be combined as a whole for the GUI data entry. If any are unmet then the GUI data entry is unsuccessful and must be corrected.

Documentation and Help

(1) Documentation accomplishes an accurate description for each mode of use.

(2) Examples are accurate.

(2) Error codes are accurately described.

Performance Bounds

· Must be able to run on different web browsers

· Be able to download an executable file in a timely fashion

· Must accurately sort the risks according to impact and probability

· Help files and tables are thorough and easy to understand

Identification of Critical Components

· InsertInOrder function

· That memory was set aside for each node added to the link list with assert.h

· For MakeDataBase, the database is sorted first

R

I

S

K

C

A

T

E

G

O

R

Y

P

O

I

N

T

E

R

P

R

O

B

A

B

I

L

I

T

Y

I

M

P

A

C

T

K

E

Y

K

E

Y

I

M

P

A

C

T

P

R

O

B

A

B

I

L

I

T

Y

P

O

I

N

T

E

R

C

A

T

E

G

O

R

Y

R

I

S

K

NULL

D

A

T

A

P

T

R

P

T

R

D

A

T

A

P

T

R

D

A

T

A

Head

NULL

P

T

R

D

A

T

A

P

T

R

D

A

T

A

Pointers (Ptr)

Prev

Cursor

Rear

Successor

Nodes

Data fields

Pointer to next node

Pointer to next node

NULL

1

Ptr

Data

1

Swap data

False

True

 Head (Start = Head)

Traverse = start(Successor

2

Temp node

 if(traverse->Impact < start->Impact)

Traverse = traverse(Successor

4

4

Traverse ……

Traverse node

start node

Ptr

Data

start node

Ptr

Data

Temp node

Ptr

Data

Start(data = temp(data

Temp(data = traverse(data

Traverse(data = start(data

Ptr

Data

Traverse node

Ptr

Data

=

=

=

5

The pointer start is created and set equal to the pointer Head.

If step 3 returns false traverse is iterated (traverse = traverse(Successor) this step repeats until traverse equals NULL ()

If step 3 returns true then the data in the node pointed to by start is swapped with the data pointed to by the pointer traverse using the temp node.

temp->Risk = traverse->Risk;

 	temp->Probability = traverse->Probability;

 	temp->Impact = traverse->Impact;

 	temp->Category = traverse->Category;

 	traverse->Risk = start->Risk;

 	traverse->Probability = start->Probability;

 	traverse->Impact = start->Impact;

 	traverse->Category = start->Category;

start->Risk = temp->Risk;

 	start->Probability = temp->Probability;

 	start->Impact = temp->Impact;

 	start->Category = temp->Category;

traverse is then iterated (traverse = traverse(Successor) and control is sent back to step 3

The pointer traverse is created and set equal to start(Successor

Traverse(Impact data field is compared to start(Impact data field

2

5

4

Data fields

Traverse = traverse(Successor

B.

C.

D.

A.

6

6

Once Traverse reaches NULL, start is the incremented (start = start(Successor)

() and the process moves back to step 2 and continues to iterate until start reaches NULL.

// Pointer to the next node

Selection rules

Methods

Operators

Goals

GOMS model

Make a risk table

Enter risk(s)

Enter categories

Enter probabilities

Enter impacts

Sort risks

Edit risk table

Print risk table

Novices

Knowledgeable intermittent users

Knowledgeable frequent users

Linklist

~Linklist

IsEmpty

Insert from user

Retrieve risk

Sort

Print

Output

Insert in order

Insert

Make database

At end

How to enter a risk

How to enter a category

How to enter a probability

How to enter a impact

How to print the risk table

How to download the executable

How to use online system.

Parameters of entries.

Until

While

Sequence

If

Case

5

6b

7

1

3

2

4

6a

FLOW GRAPH: AtEnd

FLOW GRAPH: InsertInOrder

14

1-4

5

6��

7��

8��

9��

100��

11��

12��

13��

15��

1��

2��

3��

4��

FLOW GRAPH: Advance

1��

9��

5-8

4��

3��

2��

12��

11��

10��

FLOW GRAPH: Insert

1��

2��

3��

4��

5��

6��

7��

8��

9��

10��

11��

FLOW GRAPH: RetrieveRisk

1��

2��

3��

FLOW GRAPH: InitCursor

1��

2��

FLOW GRAPH: MakeDataBase

20��

21��

22��

23��

26��

24,25

19��

FLOW GRAPH: InsertFromUser

1-10

11��

13��

12��

14��

16-18

15��

7��

3��

1,2��

4��

5��

6��

1010��

9��

8��

FLOW GRAPH: Sort

while

1-3

7��

8��

6��

5

4�

While

if

then

End if

9��

10��

if

then

11��

while

12��

End while

13��

14-16

17��

End if

FLOW GRAPH: RiskInputFromDB

End while (5)

18-20

26-28

25��

24��

23��

22��

21��

if

then

while

End while

End if

29��

30��

31��

32��

if

then

33��

while

End while

End if

FLOW GRAPH: RiskInputFromDB, cont

33-36

37��

38��

End while (4)

end

FLOW GRAPH: RiskInputFromDB,cont

1-3

5�

4��

9

6,7

10,11

8�

FLOW GRAPH: Output

1-3

4

11

10

9

8

6,7

5

FLOW GRAPH: Print

1

5

2

3

4

FLOW GRAPH: Switch

1-6

7

FLOW GRAPH: Main

[image: image129.wmf]

6

b

[image: image130.wmf]

6

b

[image: image131.wmf]

6

b

[image: image132.wmf]

6

b

[image: image133.wmf]

6

b

[image: image134.wmf]

6

b

[image: image135.wmf]

6

b

[image: image136.wmf]

6

b

[image: image137.wmf]

6

b

[image: image138.wmf]

6

b

[image: image139.wmf]

6

b

[image: image140.wmf]

6

b

[image: image141.wmf]

6

b

[image: image142.wmf]

6

b

[image: image143.wmf]

6

b

[image: image144.wmf]

6

b

[image: image145.wmf]

6

b

[image: image146.wmf]

6

b

[image: image147.wmf]

6

b

[image: image148.wmf]

6

b

[image: image149.wmf]

6

b

[image: image150.wmf]

6

b

[image: image151.wmf]

6

b

[image: image152.wmf]

6

b

[image: image153.wmf]

6

b

[image: image154.wmf]

6

b

[image: image155.wmf]

6

b

[image: image156.wmf]

6

b

[image: image157.wmf]

6

b

[image: image158.wmf]

6

b

[image: image159.wmf]

6

b

[image: image160.wmf]

6

b

[image: image161.wmf]

6

b

[image: image162.wmf]

6

b

[image: image163.wmf]

6

b

[image: image164.wmf]

6

b

[image: image165.wmf]

6

b

[image: image166.wmf]

6

b

[image: image167.wmf]

6

b

[image: image168.wmf]

6

b

[image: image169.wmf]

6

b

[image: image170.wmf]

6

b

[image: image171.wmf]

6

b

[image: image172.wmf]

6

b

[image: image173.wmf]

6

b

[image: image174.wmf]

6

b

[image: image175.wmf]

6

b

[image: image176.wmf]

6

b

[image: image177.wmf]

6

b

_1004699746.doc
[image: image1.jpg]

Advance

Level 3

AtEnd

Sort

Insert InDb

output

Constructor

RetrieveRisk

Print

Insert_User

RiskFromDb

Switch

Level 2

Level 1

Insert

MakeDb

Main

