CHAPTER 2  Algorithm Correctness and Efficiency

2.1  Program Bugs

2.2  Desk-checking and Program Walkthroughs

2.3  Testing Strategies

2.4  Debugging Techniques 

2.5  Formal Methods of Program Verification

2.6  Efficiency of Algorithms

2.7  Timing Program Execution

     Chapter Review

This chapter discusses program correctness and efficiency.  It begins with a discussion of program bugs and how they might be avoided by careful program design.  It describes how to use other members of a programming team to help detect errors in logic before they become part of the code.  As in all other situations in life, early detection leads to the best results.


The chapter discusses program testing in some detail.  It discusses the generation of a proper test plan and the differences between top-down, bottom-up, and integration testing.

It also describes the use of drivers and stubs.


There is also a discussion of formal verification of programs.  Although we are still a long way off from being able to prove that a program is correct using mathematical techniques, we can still borrow some of these ideas to help document our programs and to increase our confidence that critical parts of programs, such as loops, operate as intended.


Finally, we discuss algorithm efficiency and introduce big O notation.  The use of big O notation lets us compare the relative efficiency of algorithms.

2.1  Program Bugs

It does not really matter whether a program runs efficiently if it does not do what it is supposed to do.  One way to show that a program is correct is through testing.  However, it is difficult to determine how much testing should be done.  Very often, errors appear in a software product after it is delivered, causing great inconvenience.  Some notable software errors in operational programs have caused power brownouts, telephone network saturation, and space flight delays.  


Proper design and testing can help eliminate many program bugs.  However, there are situations in which it is impossible to test a software product in advance of its use.  Examples would be software that controls a missile or software that prevents a nuclear disaster in the event of a malfunction in a nuclear power plant.  For such software products, you must rely on proper design techniques to reduce the likelihood of error.


This chapter is about program errors or bugs and how to avoid them.  Program bugs can be eliminated by careful design and/or by careful debugging and testing after the program is written.  Obviously, it is much easier to eliminate bugs by design rather than remove them later through debugging and testing. 
There are really three kinds of errors you might encounter.  


. syntax errors

 
. run-time errors


. logic errors

Syntax Errors

Syntax errors are mistakes in your use of the grammar (or syntax) of the C++ language.  For example, using = as a relational operator instead of ==.  The C++ compiler will detect most syntax errors during compilation and will require you to correct them before it can successfully compile your program.  


Sometimes, it is possible in C++ to use incorrect syntax in a statement and have that error go undetected by the compiler.  If this happens, your statement will be syntactically correct but semantically incorrect (i.e., it will be interpreted incorrectly by the compiler).  This will result in the computer performing a different operation from the one you intended.  For this reason, you should carefully check the syntax of each statement you write and not rely entirely on the compiler to detect syntax errors.

Run-time Errors


Run-time errors occur during program execution.  A run-time error occurs when the computer attempts to perform an invalid operation.  Table 2.1 shows some examples of common run-time errors.  A run-time error will cause your program to halt execution and display a run-time error.  This is a "good news, bad news" situation.  The good news is that the error has been detected.  The bad news is that your program has crashed and is no longer executing.

Table 2.1  Run-time Errors

_____________________________________________________________

Division by zero        

attempting to divide by zero

Out-of-range error      
attempting to store an out-of-range value in a variable 

Reading an invalid data item  
attempting to read a non-numeric data item into an integer variable or a real data item into an integer variable

Reading beyond the end of file
attempting to perform a read operation after the end of a file has been reached

_______________________________________________________________

Division by Zero


Many run-time errors can be prevented by defensive programming.  If Count represents the number of items being processed and it is possible for Count to be zero, use an if statement to guard the statement


Average = Sum / Count;

so that the division operation will not be performed when Count is zero.  One way to do this is shown next.

  if (Count == 0)

    cout << "Count is zero - average is not defined\n";

  else

  {

    Average = Sum / Count;

    cout << "The average value is " << Average << "\n";

  }

Range-check Errors


A range-check error occurs when a program attempts to assign an out-of-range value to a variable.  Unlike many language compilers, C++ compilers do not check assignment statements for out-of-range values.  Making sure that all variable values are within their proper ranges is the programmer's responsibility.  Consider the declarations below

   const Max = 500;

   typedef int ScoreArray[Max];

   int I;

   ScoreArray Scores;

   int IRawData;

These declarations define storage for an array Scores (type ScoreArray) and an integer variable I.  The subscripted variable Scores[I] uses I as an array subscript.  In Turbo C++, I can be assigned any integer value between -32768 and +37767.  However, only I values in the range 0 to 499 cause the subscripted variable Scores[I] to reference storage locations which are legimately associated with array Scores.  C++ does not check for out-of-range subscript references.

Inserting Code to Prevent Range-check Errors

Range-check errors can be prevented by using an if statement to validate a value before assigning it to a variable.  If variable IRawData is type int, the if statement below ensures that the value of IRawData is within range before it is assigned to I and used as a subscript with the array Scores.  

   const Min = 0;

   const Max = 500;

   if (IRawData < 0)

   {

     cout << IRawData << " <  " << Min;

     cout << " - reset to " << Min << "\n";

     IRawData = Min;

   }

   else if (IRawData > Max)

   {

     cout << IRawData << " > " << Max;

     cout << " - reset to " << Max "\n";


IRawData = Max;

   }

   I = IRawData;

   cout << Scores[I];


You can also use a library procedure to ensure that only a valid data value is read into IRawData.  The statements 

  cout << "Enter an integer between " <<  Min:

  cout << " and " << Max << " > ";

  EnterInt(Min, Max, IRawData, Success);

call the function EnterInt (shown earlier in mytools.cpp) to read an integer value between its first two arguments (Min and Max) into its third argument (IRawData). Recall that if Min > Max the value of IRawData will be undefined and Success will be false (0). Figure 2.1 shows function EnterInt.  

Figure 2.1 Function EnterInt

________________________________________________________________

void EnterInt (int MinN, int MaxN, int &N, int &Success)

//Reads integer between MinN and MaxN into N.

//Pre : MinN and MaxN are assigned values.

//Post: Returns in N the first value entered between MinN and

//      MaxN and sets Success to 1 if MinN <= MaxN; otherwise

//      Success is 0.

{

  Success = 0;           //no valid value read for N yet

  if (MinN <= MaxN)

  {                      //valid range

    while (!Success)   //keep reading till valid number read

    {


  cout << "Enter an integer between " << MinN;


  cout << " and " << MaxN << " > ";


  cin >> N;


  Success = (MinN <= N) && (N <= MaxN);

    }

  }

  else

    cout << "Error - empty range for EnterInt.\n";

}

________________________________________________________________

Reading an Incorrect Type Data Item

Entering data of the wrong type can also cause an invalid data format error.  If the program's prompt messages are clear, this kind of error is less likely.  However, the program user may still type in the wrong data and not be aware of it.  For example, a program user may type in 34O5 as an integer value where the letter O is pressed by error instead of a zero.  Or the user may type in 3405.0 instead of the integer 3405.  


The obvious way to correct this kind of error is to read each data item into a string variable and then convert the string to a numeric value.  This can be tedious; however, the C++ library ctype.h provides a function isdigit which tests its argument to see if its ASCII code is the code for a digit.   


Figure 2.2 shows function ReadInt (in mytools.cpp) which reads an integer variable as a string and returns the corresponding integer value in its value.  

Figure 2.2  Procedure ReadInt

________________________________________________________________

int ReadInt()

//Uses function atoi from stdlib.h to convert string read

//from keyboard to an integer value and function isdigit from

//ctype.h to test for valid digits.

//Pre : None.

//Post: Returns first valid integer value typed by user.

{

  const Max = 5;      //length of input string

  char NumStr[Max];   //input string

  char *Zero = "0";   //to allow comparison with NumStr

  int IntNum;         //integer read

  int Error;          //program flag

  int I;              //loop control

  do

  {

    I = 0;

    NumStr[I] = cin.get();

    if ((NumStr[I] == '-') || (NumStr[I] == '+'))

    //check for signed integer

      Error = 0;

    else if (isdigit(NumStr[I]))

    //test for valid digit

      Error = 0;

    else

    //signal input error

      Error = 1;

    while ((I < Max - 1) && (NumStr[I] != '\n') && (!Error))

    {

      I++;

      NumStr[I] = cin.get();

      if (isdigit(NumStr[I]))

      //check for valid digit

        Error = 0;

      else if (NumStr[I] == '\n')

      //check for end of input

        Error = 0;

      else

        Error = 1;

    }

    if (Error)

    {

      cout << "Input contains invalid integer character\n";

      cout << "at string position " << I + 1 << "\n";

      cout << "Please enter new string > ";

      cin.ignore(80, '\n');

    }

  } while (Error);

  IntNum = atoi(NumStr);

  return IntNum;

}

_________________________________________________________________

Attempt to Read Beyond the End of a File

When reading data from a file, any of the errors described earlier in this section can occur.  It is also possible to attempt to read more data items than were provided in the data file.  In many programming languages this would cause an attempt to read beyond end of data file error.  In most instances Turbo C++ will not warn the program user that this type of error has occurred. 


The most common cause of this error is a data entry loop that is repeated one more time than it should be.  Assuming that DataFile is a sequential file of characters and that NextItem is a char variable, the loop shown below is an example of this type of error.

    //loop fails to halt immediately after end file is reached

    while (!DataFile.eof())

    {

      DataFile >> NextItem;

      Process(NextItem);

    }

The reason that this loop fails to terminate at the proper time is that the eof operator does not return true (1) until after the EOF character has been read from the file. The only symptom that there is a problem, is that the last data character found in the file would appear to have been processed twice by the loop. 

     We can minimize the chances of this kind of error if we always use a while loop that checks for an end of file before processing the information obtained from the file during the most recent performing a read operation as shown next.

    //loop correctly halts after end file is reached

    DataFile >> NextItem;

    while (!DataFile.eof())

    {

      Process(NextItem);

      DataFile >> NextItem;

    }

The loop above continues to read data items from file DataFile until the end of the file is reached.  With this loop structure function Process is never called when eof is true.  

Exercises for Section 2.1

Programming

1. Write a program to test function ReadInt.

2. Write a program to test the C++ compiler you are using for

   this course to see whether it is able to identify an attempt

   to read beyond the end of the data file correctly.

2.2  Desk-checking and Program Walkthroughs

Once you have removed all syntax errors and run-time errors, a program will execute through to normal completion.  However, that is no guarantee that the program does not contain logic errors.  Because logic errors do not usually cause an error message to be displayed, logic errors frequently go undetected.  


Logic errors can be difficult to detect and isolate.  If the logic error occurs in a part of the program that always executes, then each run of the program may generate incorrect results.  Although this sounds bad, it is actually the best situation because the error is more likely to be detected if it occurs frequently.  If the value that is being computed incorrectly is always displayed, it will be easier to find the logic error.  However, if this value is part of a computation and is not displayed, it will be very difficult to track down the error and the section of code that is responsible. 


The worst kind of logic error is one which occurs in a relatively obscure part of the code that is infrequently executed.  If the test data set does not exercise this section of code, the error will not occur during normal program testing.  Therefore, the software product will be delivered to its users with a hidden bug.  Once that happens, it becomes much more difficult to detect and correct the problem.


Logic errors arise during the design phase and are the result of an incorrect algorithm.  One way to reduce the likelihood of logic errors is to carefully check the algorithm before implementing it.  This can be done by hand-tracing the algorithm, carefully simulating the execution of each algorithm step and comparing its execution result to one that is calculated by hand.  


Hand-tracing an algorithm is complicated by the fact that the algorithm designer often anticipates what an algorithm step should do without actually simulating its execution.  Because the algorithm designer knows the purpose of each step, it requires quite a bit of discipline to carefully simulate each individual algorithm step, particularly if the algorithm step is inside a loop.  For this reason, programers often work in teams to trace through an algorithm.  The algorithm designer must explain the algorithm to the other team members and simulate its execution with the other team members looking on (called a structured walkthrough).  


In tracing through an algorithm, it is important to exercise all paths of the algorithm.  It is also important to check special conditions called boundary conditions to make sure that the algorithm works for these cases as well as the more common ones.  For example, if you are tracing an algorithm that searches for a particular target element in an array, you should make sure that the algorithm works for all the cases listed below.

.  The target element is not in the array.

.  The target element is the middle element of the array.

     .  The target element is the first array element.


.  The target element is the last array element.


.  The array has only one element.


.  The array is empty (zero elements).


.  There are multiple occurrences of the target element.

     The techniques discussed in this section are applicable to testing the completed program as well as the algorithm.  We discuss program testing next.

Exercises for Section 2.2

Self-Check

1. Why is it a good idea to use the structured walkthrough

   approach when hand-tracing an algorithm?

2. List two boundary conditions which should be checked when

   testing procedure EnterInt (see Figure 2.1). 

2.3  Testing Strategies

Preparations for Testing

After a program has been written and debugged, it must be thoroughly tested before it can be delivered as a final software product.  Although testing is done after completion of the software, it is beneficial to develop a test plan early in the design stage.


Some aspects of a test plan include deciding how the software will be tested, when the tests will occur, who will do the testing, and what test data will be used.  We will discuss these components of the test plan throughout the section. If the test plan is developed early in the design stage, testing can take place concurrently with the design and coding.  Again, the earlier an error is detected, the easier and less-expensive it will be to correct it.  




Another advantage of deciding on the test plan early is that this will encourage programmers to prepare for testing as they write their code.  A good programmer will practice defensive programming and include code that detects unexpected or invalid data values.  For example, if a function has the precondition 

     //Pre : N greater than zero

it would be a good idea to place the if statement 

     if (N <= 0)

       cout << "Invalid value for argument N -- " << N << "\n";

at the beginning of the function.  This if statement will provide a diagnostic message in the event that the argument passed to the function is invalid.

     Similarly, if a data value being read from the keyboard is supposed to be between 0 and 40, a defensive programmer would use function EnterInt from library mytools.h 

     cout << "Enter number of hours worked: ";

     EnterInt(0, 40, Hours, Success);

As discussed earlier, the first and second arguments of EnterInt define the range of acceptable values for its third argument, while the fourth argument Success is set to false (0) if EnterInt is called with an invalid range.

Debugging Tips for Program Systems

Most of the time, you will be testing program systems that contain collections of classes and library functions.  We provide a list of debugging tips to follow in writing these modules (e.g. functions or methods) next.

1.  Carefully document each module parameter and local identifier using comments as you write the code.  Also describe the library operation using comments. 

2.  Leave a trace of execution by printing the module name as you enter it. 

3.  Print the values of all input and input/output arguments upon entry to a module.  Check that these values make sense. 

4.  Print the values of all module outputs after returning from a module.  Verify that these values are correct by hand-computation. For void functions, make sure that all input/output and output parameters are declared as variable parameters. 

5.  Make sure that a module stub assigns a value to each of its outputs. 

     You should plan for debugging as you write each module  rather than after the fact.  Include the output statements required for Steps 2 through 4 above in the original C++ code for the module.  When you are satisfied that the module works as desired, you can remove the debugging statements.  One efficient way to remove them is to change them to comments by enclosing them with the symbols /*, */.  For single lines of debugging code the comment symbols // may be quicker to use.  If you have a problem later, you can remove the comment symbols, thereby changing the comments to executable statements.

     Another approach to turning debugging statements on and off is to use a Boolean constant (say Debug) which is declared in a header file used by each program module.  The declaration

    const Debug = 1;       //turn debugging on

should be used during debugging runs, and the declaration

    const Debug = 0;      //turn debugging off

should be used during production runs.  Within the main program and its functions, each diagnostic print statement should be part of an if statement with (Debug) as its condition.  If function Process begins with the if statement below, the call to cout is only made during debugging runs (Debug is 1 or true) as desired.

   if (Debug)

   {

     cout << "Function Process entered\n";

     cout << "Input parameter StartBal has value "; 

     cout << StartBal << "\n";

   }

Developing the Test Data

The test data should be specified during the analysis and design phases.  During the analysis phase, the systems analyst is very concerned with the relationship between the system inputs and outputs.  There should be system test data to check for all expected system inputs as well as unanticipated data.  The test plan should also specify the expected system behavior and outputs for each set of input data.

Who Does the Testing


Normally testing is done by the programmer, by other members of the software team who did not code the module being tested, and by the final users of the software product.  It is extremely important not to rely only on programmers for testing a module.  Some companies have special testing groups who are expert at finding bugs in other programmers' code.  The reason for involving future program users is to determine whether they have difficulty in interpreting prompts for data.  Users are more likely to make data entry errors than are the other members of the programming or testing teams.  

Black Box versus White Box Testing

There are two basic ways to test a completed module or system: black box or specification based testing and white box or glass box testing.  In black box testing, we assume that the program tester has no idea of the code inside the module or system.  The tester's job is to verify that the module does what its specification says that it does.  For a function, this means ensuring that the function's postconditions are satisfied whenever its preconditions are met.  For a system or subsystem, this means ensuring that the system does indeed satisfy its original requirements specification.  Because the tester cannot look inside the module or system, he or she must prepare sufficient sets of test data to ensure that the system outputs are correct for all valid system inputs.  Also, the module or system should not crash when presented with invalid inputs.  Black box testing is most often done by a special testing team or by program users instead of the programmers.

     In glass box or white box testing, the tester has full knowledge of the code for the module or system and must ensure that each and every section of code has been thoroughly tested.  For a selection statement (if or switch), this means checking all possible paths through the selection statement.  The tester must determine that the correct path is chosen for all possible values of the selection variable, taking special care at the boundary values where the path changes.  For example, a boundary for a payroll program would be the value of hours worked which triggers overtime pay.  

     For a loop, the tester must make sure that the loop always performs the correct number of iterations and that the number of iterations is not off by one.  Also, the tester should verify that the computations inside the loop are correct at the boundaries - that is, for the initial and final values of the loop control variable.  Finally, the tester should make sure that the module or system still meets its specification when a loop executes zero times.  The tester should make every effort possible to see that it is very unlikely that there are no circumstances under which the loop would execute forever.

Top-down Testing

As the number of statements in a program system grows, the possibility of error also increases.  If you keep each module to a manageable size, the likelihood of error will increase much more slowly.  It will also be easier to read and test each module.  Finally, avoiding the use of global variables will minimize the chance of harmful side effects that are always difficult to locate. 

     All the methods for a particular class library will not all be completed at the same time.  However, we can still test the class library and its completed methods if we use a stub in place of each method that has not yet been completed.  A stub has the same header as the methods or function it replaces; however, the body just prints a message indicating that the module was called.  Figure 2.3 shows a stub for method DisplayList shown earlier in Figure 1.12.

Figure 2.3  Stub for Method Directory.WriteDirectory

________________________________________________________________

void List::DisplayList()

//Stub for method which writes list to screen.

//Pre : List is initialized.

//Post: Each list entry is displayed.

{

  cout << "Stub for List method DisplayList\n";

}

________________________________________________________________

     Besides displaying an identification message, a stub will assign easily recognizable values (e.g., 0 or 1) to any module outputs to prevent execution errors caused by undefined values.  If a client program calls one or more stubs, the message printed by each stub when it is called provides a trace of the call sequence, and allows the programmer to determine whether the flow of control within the client program is correct.  The process of testing a client program in this way is called top-down testing. 

Bottom-up Testing

     When a module is completed, it can be substituted for its stub.  However, before doing this, you should perform a preliminary test of the module because it is easier to locate and correct errors when dealing with a single module rather than a complete program system.  We can test a new module by writing a short driver program.  A driver program declares any necessary object instances and variables, assigns values to any of the module's inputs (as specified in the module's preconditions), calls the module, and displays the values of any outputs returned by the module.

     Don't spend too much time creating an elegant driver program because you will discard it as soon as the new module is tested.  Figure 2.4 shows a driver program to test method ReadEntry in  the library implmentation file entry.cpp (see Figure 1.10).

Figure 2.4  Driver Program for testing Method ReadEntery

________________________________________________________________

#include <iostream.h>

#include "entry.h"

void main()

//Driver program tests Entry method ReadEntry.

//Tested: August 21, 1994

//

//Imports object Entry methods:

//ReadEntry, GetName, GetNumber

{

  Entry AnEntry;

  AnEntry.ReadEntry();

  cout << "Name field is " << AnEntry.GetName();

  cout << "\n";

  cout << "Number field is " << AnEntry.GetNumber();

  cout << "\n";

}

_________________________________________________________________

    Once you are confident that a module works properly, it can be substituted for its stub in the appropriate implementation file.  The process of separately testing individual modules before inserting them in an implementation file is called bottom-up testing. 

     By following a combination of top-down and bottom-up testing, the programming team can be fairly confident that the complete program system will be relatively free of errors when it is finally put together.  Consequently, the final debugging sessions should proceed quickly and smoothly.  

Integration Testing

Another aspect of testing a system is called integration testing.  In integration testing, the program tester must determine whether the individual components of the system which have been separately tested (using either top-down, bottom-up, or some combination) can be integrated with other like components.  Each phase of integration testing will deal with larger units, progressing from individual modules, through units, and ending with the entire system.  For example, after two units are completed, integration testing must determine whether the two units can work together.  Once the entire system is completed, integration testing must determine whether that system is compatible with other systems in the computing environment in which it will be used.

Exercises for Section 2.3

Self-check

1.  Explain why a procedure interface error would not be

    discovered during white box testing.

2.  Devise a set of data to test function EnterInt (Figure 2.1)

    using:

    a. white box testing

    b. black box testing 

2.4  Debugging Techniques

We mentioned earlier that one way to debug a program was to insert extra cout statements to display intermediate results during program execution.  If the program executes interactively, you can look at these results each time the program pauses for input and compare them against hand-calculated values.  If the program executes in batch mode, you will have to wait until the program completes its execution before checking any intermediate results.


A better approach is to  utilize the debugger that is part of the Turbo C++ environment.  The debugger enables you to execute your program one statement at a time (single-step execution), while observing changes made to selected variables or expressions.  As each statement executes, you can compare the values of variables that have been placed in a special Watches window with their expected values.

The Watches Window


Before beginning single-step execution, you must place the variables that you wish to observe in the Watches window.  The easiest way to do this is to move the Edit cursor to any occurrence of the variable in the program and then press Ctrl-F7.  This will cause a dialog box labeled Add Watch to pop up containing the name of the selected variable in its Watch expression field (see Figure 2.5).  If you press Enter or select OK this variable will be added to the Watches window.  You can also get an Add Watch window to pop up by going through the Debug menu and selecting Add Watch (see Figure 2.6).  If the variable in the Expression field of the Add Watch window is incorrect, you can edit it and press Enter when done.


Figure 2.5  Add Watch Dialog Box


Figure 2.6  Selecting Add Watch from the Debug Menu


You should place variables that represent intermediate results in the Watches window.  Also, loop control variables should be placed in the Watches window.  You can add variables at any time that program execution pauses, and you may want to have different variables and expressions in the Watches window at different points in the program.  


You can insert expressions in the same way that you insert variables.  One approach is to type in the expression when the Add Watch dialog box pop ups.  A second approach is to move the edit cursor to the first character in the expression before causing the Add Watch dialog box to pop up.  The variable or literal at the edit cursor will appear in the Watch expression field.  Pressing the right arrow key will move additional characters from the expression into the Watch expression field.  Press Enter or select OK when done.


You can delete individual variables or expressions from the Watches window when they are no longer needed.  To do this, highlight an item to be deleted by using your mouse cursor.  Next, press the Delete key on the keyboard to remove the highlighted item from the Watches window.  To remove all variables or expressions, close the Watches window.


You can use the F6 function key as a "toggle" to switch between the Edit window and the Watches window.  You can also display both windows on the screen if you reduce the size of the Edit window.

Single-step Execution

The purpose of placing variables and expressions in the Watches window was to enable you to observe changes to these items as your program executes.  One way to accomplish this is to use single-step execution.  To specify single-step execution, select the Trace into option from the Run menu or press F7.  An execution bar will appear over the begin line of the main program.  If you continue to press F7, the statement under the execution bar will execute and the execution bar will advance to the next program statement (see Figure 2.7).

           Figure 2.7  Debugger Execution Bar


A second method of specifying single-step execution is to select the Trace over option from the Run menu (or press F8).  These two modes operate in the same way except when the next statement is a function call.  If you press F8 (Step over), the debugger will execute the whole procedure or function body, stopping at the first statement after the return from the module.  If you press F7 (Trace into), the debugger will single-step through the statements in the body.

Setting Breakpoints

Another way to use the debugger is to separate your program into executable chunks or sections by setting breakpoints.  When you select Run (or press Ctrl-F9), the program will execute from the point where it has stopped to the next breakpoint.  When the program pauses again, you can check the values of all items in the Watches window and add any new variables or expression whose values you wish to see.  


A programmer may use breakpoints in combination with single-step execution to locate errors.  By executing from breakpoint to breakpoint, the programmer can find the section where a particular error has occurred.  Then by reexecuting that section using single-step execution, the programmer can find the individual statements that are in error.


There are two ways to set and remove breakpoints.  The easiest approach is to move the edit cursor to a statement where you would like to set a breakpoint.  Then press Ctrl-F8 (Toggle breakpoint) and a breakpoint will be set at that statement.  If the statement is already a breakpoint and you press Ctrl-F8, the breakpoint will be removed.  The second approach is to use the Debug menu.  First move the Edit cursor to the location of the new breakpoint and pull up the Debug menu and select Toggle Breakpoint.

     To modify any of the breakpoints already set in your program you can select the Breakpoints item in the Debug menu this causes the Breakpoints dialog box to pop up as shown in Figure 2.8.  Details of all of the breakpoints set in your program will appear in the list of breakpoints.  You can highlight any breakpoint in this list and then use the buttons as specified next.


.
OK closes the Breakpoints dialog box.


.
Edit enables you to modify the breakpoint's condition or pass count fields, as described next.


.
Delete removes the breakpoint.


.
View shows you the statement where the breakpoint is set without moving the execution bar.

     .    At sets a breakpoint on a symbol.


.
Cancel close the dialog box without making any changes.

       Pushing the Edit button brings up the Breakpoint Modify/New dialog box shown in Figure 2.9.  If you select the condition field, you can specify a condition under which this breakpoint will be activated.  If you select the Pass count field, you can specify the number of loop repetitions to allow before the breakpoint is activated.  Select OK to actually set the breakpoint.


Figure 2.8  Breakpoints Dialog Box

    
Figure 2.9  Breakpoints Modify/New Dialog Box


As an alternative to setting breakpoints in advance, you can move the edit cursor to a statement where you would like to begin single-step execution.  If you then press F4, Turbo C++ will execute all statements from the current one up to the one selected by the edit cursor.  After execution pauses, you can select single-step execution.  When you wish to return to normal execution, either press Ctrl-F9 (Run) or move the edit cursor to the next stopping point and press F4 again.

Restarting the Debugger

If you are in the middle of a debugging session and want to start over again from the beginning of your program, select Program Reset (Ctrl-F2) from the Run menu.  This reinitializes the debugging system and positions the execution bar over the begin line of the main program.  It also closes any open files, clears the execution stack of any procedure calls, and releases any storage used by your program.


Prior to loading a new program into the Turbo C++ environment after a debugging session, select Program Reset to be certain that the computer memory used by your old program is available for use by your new program.  It is important to note that neither loading a new program into the Turbo C++ system nor selecting Program Reset removes any of the expressions displayed in the Watch window or clears any of the program breakpoints.  To remove the watch expressions from the Watch window, close the Watch window.  To clear all breakpoints, select the Clear all button shown in Figure 2.8.  You should do this prior to loading a new program into the Turbo C++ environment.


Turbo C++ will offer to restart the debugging session if you make any changes to a program's statements during debugging.  For example, if you make a change to a program statement using an Edit command and then press one of the execution command keys (F7, F4 or Ctrl-F9), Turbo C++ will display an Information dialog box with the message Source has been modified.  Rebuild?  If you type Y, your program will be compiled again, the execution bar will be placed on the begin line of the main program, and the debugger will be reinitialized (as it would following a Program Reset).  If you type N, you will continue the current debugging session, and the changes made to your program will have no effect until you recompile your program.  Table 2.2 contains a summary of the debugger keys we have discussed in this section. A more complete discussion of the debugger appears in the Turbo C++ User's Guide.  

Table 2.2  Turbo C++ Debugger Hot Keys

________________________________________________________________

  Ctrl-F2  Reset debugging environment

  Ctrl-F7  Opens add watch dialog box

  Ctrl-F8  Toggle break point

  Ctrl-F9  Resume normal execution

  F4       Execute to cursor position

  F6       Switch between windows

  F7       Single step execution - trace into procedures

  F8       Single step execution - step over procedure calls

________________________________________________________________

2.5 Formal Methods of Program Verification

In Section 2.3, we described some aspects of program and system testing.  We stated that testing should begin as early as possible in the design phase and continue through system implementation.  Even though testing is an extremely valuable tool for providing evidence that a program is correct and meets its specifications, it is very difficult to know how much testing is enough.  For example, how do we know that we have tried enough different sets of test data or that all possible paths through the program have been executed?  

     For these reasons, computer scientists have developed a second method of demonstrating the correctness of a program.  This method is called formal verification and it involves the application of formal rules of logic to show that a program meets its specification.  By carefully applying formal rules, we can determine that a program meets its specification just like a mathematician proves a theorem using definitions, axioms, and previously proved theorems.  Although, formal verification works well on small programs, it is more difficult to apply it effectively on very large programs or program systems.   

     A thorough discussion of formal verification is beyond the scope of this book.  However, we will introduce two key concepts, assertions and loop invariants, and we will use them to help document and clarify some of the program modules appearing in the book.

Assertions

An important part of formal verification is to document a program using assertions -- logical statements about the program which are "asserted" to be true.  An assertion is written as a comment and it describes what is supposed to be true about the program variables at that point.

Example 2.1

The next program fragment contains a sequence of assignment statements, each followed by an assertion.

     A = 5;             //assert: A == 5

     X = A;             //assert: X == 5

     Y = X + A;         //assert: Y == 10

The truth of the first assertion //assert: A == 5 follows from executing the first statement with the knowledge that 5 is a constant.  The truth of the second assertion //assert: X == 5 follows from executing X = A with the knowledge that A is 5.  The truth of the third assertion //assert: Y == 10 follows from executing Y = X + A with the knowledge that X is 5 and A is 5.  In the fragment above, we used assertions as comments to document the change in a program variable after each assignment statement executes. 

     The task of a person using formal verification is to prove that a program fragment meets its specification.  For the fragment above, this means proving that the final assertion or postcondition //Pre : Y == 10 follows from the initial presumption or precondition //Post: 5 is a constant after the program fragment executes.  The assignment rule (described below) is critical to this process.  If we know that //assert: A == 5 is true, the assignment rule allows us to make the assertion //assert: X == 5 after executing the statement X = A.

------

The Assignment Rule

    //P(A)

    X = A;

    //P(X)

Explanation:  If P(A) is a logical statement (assertion) about A, the same statement will be true of X after the assignment statement 

     X = A; 

executes.

------

Preconditions and Postconditions Revisited 

     For our purposes, it will suffice to use assertions as a documentation tool to improve our understanding of programs rather than as a means of formally proving them correct.  We have already used assertions in the form of preconditions and postconditions to document the effect of executing a procedure or function.  A procedure's precondition is a logical statement about its input arguments.  A procedure's postcondition may be a logical statement about its output arguments, or it may be a logical statement that describes the change in program state caused by the function execution.  Any of the following activities represents a change in program state: changing the value of a variable, writing additional program output, reading new input data from a data file or the keyboard.

Example 2.2

The precondition and postcondition for function EnterInt (see Figure 2.1) are repeated next.

  void EnterInt (int MinN, int MaxN, int &N, int &Success)

  //Reads integer between MinN and MaxN into N.

  //Pre : MinN and MaxN are assigned values.

  //Post: Returns in N the first value entered between MinN and

  //      MaxN and sets Success to 1 if MinN <= MaxN; otherwise

  //      Success is 0.  

The precondition tells us that input arguments MinN and MaxN are defined before the function execution begins.  The postcondition tells us that the function's execution assigns the first data value between MinN and MaxN to the output parameter N whenever (MinN <= MaxN) is true. 

Verifying an if statement  

Verification of an if statement requires us to consider the consequences of what happens when the if statement condition is true and what happens when it is false.  Formally the semantics of the if statement look like

  //P

  if (B)

    //P1 

    S1 

    //Q1

  else

    //P2

    S2 

    //Q2

  //Q

The semantics of the if statement say if the boolean expression B evaluates to true then execute statement S1; or when the boolean expression evaluate to false execute statement S2.  Each of the statements S1 and S2 have their own pre and postconditions which are logically related to the if statement precondition //P and postcondition //Q.

Example: 2.3  The program fragment below could be used to compute the absolute value of some variable X.

  //assert: X has an initial value  

  if (X >= O)

    //assert: X >= 0

    Y = X;

    //assert: (X >= 0) and (Y = X)

  else

    //assert: X < 0

    Y = -X;

    //assert: (X < 0) and (Y = -X)

  //assert: ((X >= 0) and (Y = X)) or ((X < 0) and (Y = -X))

The assertion "X has an initial value" is the precondition to the whole if statement.  The assertions surrounding the statement

  Y = X;

were determined using our knowledge of the formal semantics of the assignment and the if statement. The semantics of the if statement tell us that we can not execute the statement

  Y = X;

unless (X >= 0). To determine the precondition for the statement

  Y = -X;

semantics of the if statement tell us that we need to negate the Boolean condition

  (X >= 0)

to get

  (X < 0)

To complete the postcondition we need for the else clause statement we use our understanding of the semantics of assignment statements.  The postcondition for the whole if statement is constructed by using the Boolean operator or to combine the postconditions for the statements following each of the assignment statements.  In this case our post condition is equivalent to the mathematical definition of the absolute value of X, which is what we were seeking to verify.

Loop Invariant

We stated earlier that loops are a very common source of program errors.  It is often difficult to determine that a loop body executes exactly the right number of times or that loop execution causes the desired change in program variables.  A special type of assertion, a loop invariant, is used to help prove that a loop meets its specification.  A loop invariant is a logical statement involving program variables which is true before the loop is entered, true after each execution of the loop body, and true when loop termination occurs.  It is called an invariant because it is a relationship that remains true as loop execution progresses.  

     As an example of a loop invariant, let's examine the loop below which accumulates the sum of the integers 1, 2, ... , N where N is a positive integer and Sum, I, and N are type int.

     //Accumulate the sum of integers 1 through N in Sum.

     //assert: N >= 1     

     Sum = 0;

     I = 1;

     while (I <= N)

     {

       Sum = Sum + I;

       I = I + 1;

     }

     //assert: Sum = 1 + 2 + 3 + ... + N-1 + N

The first assertion //assert: N >= 1 is the precondition for the loop, and the last assertion is its postcondition.  

     We stated above that the loop invariant must be true before the loop begins execution and after each loop repetition.  Since it traces the loop's progress, it should be a logical statement about the loop control variable I and the accumulating sum.  

     Fig. 2.10 sketches the loop's progress for the first four iterations of the loop.  At the end of the fourth iteration, I is 4 and Sum is 6 -- the sum of all integers less than 4 (1 + 2 + 3).  When loop repetition finishes, I will be N + 1 and Sum will contain the desired result (1 + 2 + 3 + ... + N).  Therefore, we propose the invariant 

     //invariant: (I <= N + 1) and (Sum == 1 + 2 + ... + I - 1)

This means that inside the loop I must be less than or equal to N + 1, and that after each loop repetition, Sum is equal to the 

sum of all positive integers less than I.  

Figure 2.10  Sketch of Summation Loop

------------------------------------------------

     Sum

      |

      |

    6 |      _ 

      |     |

      |     |

    3 |    _|

      |   |

    1 |  _|

      | | 

       ------------------- I

        1 2 3 4  ...  N

---------------------------------------------------

     You may be wondering why the first part of the invariant is (I <= N + 1) instead of (I <= N).  This is because the loop invariant must be true after the last iteration of the loop too.  Since the last step taken in the loop body is to increment I, the last value assigned to I just prior to loop exit is N + 1.  

     The loop invariant must also be true before loop execution begins.  At this point, I is 1 and (1 <= N + 1) is true for (N >= 1) - the precondition.  Also, the invariant requires that the value of Sum be equal to the summation of all positive integers less than 1.  Because Sum is initialized to 0, this is also the case.

     In program verification, the loop invariant is used to prove that the loop meets its specification.  For our purposes, we will use the loop invariant to document what we know about the loop's behavior and we will place it just before the loop body as shown next.

   //Accumulate the sum of integers 1 through N in Sum.

   //assert: N >= 1

   Sum = 0;

   I = 1;

   while (I <= N)

   //invariant: I <= N + 1 and Sum := 1 + 2 + ... + I - 1

   {

     Sum = Sum + I;

     I = I + 1;

   }

   //assert: (I = N + 1) and (Sum = 1 + 2 + 3 + ... + N - 1 + N)

Loop Invariants as a Design Tool

Some computer scientists recommend writing the loop invariant as a preliminary step before coding the loop.  The invariant serves as a specification for the loop, and it can be used as a guide to help determine the loop initialization, the loop repetition condition, and the loop body.  For example, we can write the following loop invariant to describe a summation loop that adds N data items:

    //invariant:

    //  Count <= N and

    //  Sum is the sum of all data read so far

     From the loop invariant, we can determine that:

  .  the loop initialization is:

       Sum = 0.0;

       Count = 0;

  .  the loop repetition test is:

       (Count < N)

  .  the loop body is:

       cin >> Next;

       Sum = Sum + Next;

       Count = Count + 1;

Given all this information, it becomes a simple task to write the summation loop (see programming exercise 2).    

Invariants and the for Statement

Since the loop invariant states what we know to be true about a loop after each iteration, we should be able to write an invariant for a for statement as well as a while statement.  To ensure that the loop invariant will remain true, we will assume that the loop control variable in a for statement is incremented just before loop exit and retains its final value.  

     //assert: N >= 1

     Sum = 0;

     for (I = 1; I <= N; I++)

     //invariant: I <= N + 1 and Sum = 1 + 2 + ... + I - 1

       Sum = Sum + I;

     //assert: Sum = 1 + 2 + 3 + ... + N - 1 + N

More Loop Invariants

This section provides more examples of the use of assertions and loop invariants to document a loop.  Studying these examples should help you understand how to write invariants.

Example 2.3

Figure 2.11 shows a sentinel-controlled while loop that computes the product of a collection of data values.  Loop exit occurs after reading in the sentinel value (value of Sentinel).  The loop invariant indicates that Product is the product of all values read before the current one and that none of these values was the sentinel.  The preconditions and postconditions for the loop are written as assertions.

Figure 2.11  Sentinel-controlled Loop with Invariant

________________________________________________________________

  //Compute the product of a sequence of data values.

  //assert: Sentinel is a constant.

  Product=1;

  cout << "When done, enter " << Sentinel << " to stop\n";

  cout << "Enter the first number > \n";

  cin >> Num;

  while (Num != Sentinel)

  //invariant:

  //  Product is the product of all prior values read into Num

  //  and no prior value of Num was the sentinel.

  {

    Product = Product * Num;

    cout << "Enter the next number > \n";

    cin >> Num;

  }

  //assert:

  //  Product is the product of all numbers read into Num

  //  before the sentinel.

________________________________________________________________

Selection Sort with Assertions and Loop Invariants

This section discusses a fairly intuitive (but not very efficient) algorithm called the selection sort.  To perform a selection sort of an array with N elements (subscripts 0 to N - 1), we locate the smallest element in the array, and then switch the smallest element with the element at subscript 0, thereby placing the smallest element at position 0.  Then we locate the smallest element remaining in the subarray with subscripts 1 to N - 1, and switch it with the element at subscript 1, thereby placing the second smallest element at position 1.  Then we locate the smallest element remaining in subarray 2 to N - 1 and switch it with the element at subscript 2, and so on.  

     Figure 2.12 traces the operation of the selection sort algorithm.  The column on the left shows the original array.  Each subsequent column shows the array after the next smallest element is moved to its final position in the array.  The subarray under the color screen represents the portion of the array that is sorted after each exchange occurs.  Note that it will require, at most, N - 1 exchanges to sort an array with N elements.  The algorithm follows.

Selection Sort Algorithm

1. for (Fill = 0; Fill < N - 1; Fill++)

     2.  Find the position of the smallest element 

         in subarray with subscripts Fill to N - 1.

     3.  if Fill is not the position of the smallest element then

           4.
Switch the smallest element with the one at            position Fill.

Figure 2.12  Trace of Selection Sort

_________________________________________________________________ 

              Fill is 0    Fill is 1    Fill is 2

           34           15           15           15

unsorted   45           45           23           23  final sorted

 array     23           23           45           34     array

           15           34           34           45

                Switch       Switch       Switch

                15, 34       23, 45       34, 45

_________________________________________________________________

     To refine step 2 of the selection sort algorithm, we need a loop that "searches" for the smallest element in the subarray with subscripts Fill to N - 1.  This loop must save the index of the smallest element found so far, and compare each new element to the smallest so far.  If a new element is smaller than the smallest so far, the index of the new element is saved.

Step 2 Refinement

2.1  Initialize the position of the smallest so far to Fill.  

2.2  for (Next = Fill + 1; Fill < N; Fill++) do

       2.3 if the element at Next < the smallest so far then

             2.4  Reset the position of the smallest so far to Next.

     Function SelectSort in Figure 2.13 implements the selection sort algorithm for its array parameter SArray.  Local variable IndexOfMin holds the location of the smallest exam score found so far in the current subarray.  After each execution of the inner for loop, function Swap is called to exchange the elements with subscripts IndexOfMin and Fill, provided that IndexOfMin and Fill are different.  After the execution of function SelectSort, the array elements will form an increasing sequence.

Figure. 2.13  Selection Sort Function

_________________________________________________________________

void Swap(int &Num1, int &Num2)

//Switches values of Num1 and Num2.

//Pre : Num1 and Num2 are defined.

//Post: Num1 is old Num2 and Num2 is old Num1.

{

  int Temp;

  Temp = Num1;  //assert: Temp == Num1

  Num1 = Num2;  //assert: Temp == Num1 and Num1 == Num2

  Num2 = Temp;  //assert: Temp == Num1 and Num2 == Num1

}

void SelectSort(int SArray[], int N)

//Sorts the data in array SArray.

//Pre : 0 <= N < declared size of SArray and subarray

//      SArray[0..N - 1] is defined.

//Post: The values in array SArray are arranged in

//      increasing order.

{

  int Fill;       //element being filled with next smallest score

  int Next;       //element being compared to smallest so far

  int IndexOfMin; //index of smallest so far

  for (Fill = 0; Fill < N; Fill++)

  //invariant:

  //  The elements in SArray[0..Fill - 2] are arranged in

  //  increasing order and Fill < N

  {

    //Find position of smallest element in SArray[Fill - 1..N - 1]

    IndexOfMin = Fill;

    for (Next = Fill + 1; Next < N; Next++)

      //invariant:

      //  The element at IndexOfMin is the smallest in

      //  SArray[Fill..Next - 2] and Next < N - 1

      if (SArray[Next] < SArray[IndexOfMin])


IndexOfMin = Next;

    //assert:

    //  element at IndexOfMin is smallest in SArray[Fill..N - 1]

    //Exchange elements with subscripts Fill and IndexOfMin

    if (IndexOfMin != Fill)

      Swap(SArray[Fill], SArray[IndexOfMin]);

  }

}

__________________________________________________________________

     The loop invariant for the outer loop

      //invariant:

      //  The elements in SArray[0..Fill - 2] are arranged in

      //  increasing order and Fill <= N. 

summarizes the progress of selection sort.  The subarray whose elements are in their proper place is shown under the color screen in the sketch of array SArray below.  The remaining elements are not yet in place and are all larger than SArray[Fill - 2].

                         array SArray

 [0] [1]     ...       [Fill-2] [Fill-1]      ...             [N-1]

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

³elements in their proper place³elements larger than SArray[Fill-2]³ 

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ


During each pass, the portion of the array under the color screen grows by one element and Fill is incremented to reflect this.  When Fill is equal to N - 1, the first N - 2 elements will be in their proper place, so SArray[N - 1] must also be in its proper place.

Exercises for Section 2.5

Self-check

1. Write the loop invariant and the assertion following the

   loop for the while loop in function EnterInt (Figure 2.1).

2. What other assertions should be added to function EnterInt

   to facilitate its verification?

3. For function SelectSort, explain the loop invariant for the

   inner for loop and sketch its meaning.

4. Trace the execution of selection sort on the list below.

   Show the array after each exchange occurs.  How many exchanges

   are required?  How many comparisons?  10 55 34 56 76 5

5. How could you get the array elements in descending order (largest

   value first)? 

Programming

1. Another method of performing the selection sort is to place the

   largest value in position N - 1, the next largest value in

   position N - 1, and so on.  Write this version.

2. Write a function which returns the count (N) of the number of

   non-zero digits in an arbitrary integer (Number). Your solution

   should include a while loop for which the following is a valid

   loop invariant

     //invariant:

     //  0 <= Count <= N and Number has been 

     //  divided by 10 Count times.

   and the assertion below would be valid following the loop:

     //assert: Count = N 

3. Write a program fragment that implements the loop whose invariant

   is described in the subsection entitled "Loop Invariants as a

   Design Tool."

2.6  Efficiency of Algorithms

There are many algorithms for searching and sorting arrays.  Since arrays can have a very large number of elements, the time required to process all the elements of an array can become significant.  Therefore, it is important to have some idea of the relative efficiency of different algorithms.  It is very difficult to get a precise measure of the performance of an algorithm or program.  For this reason, we normally try to approximate the effect on an algorithm of a change in the number of items, N, that it processes.  In this way, we can see how an algorithm's execution time increases with N, so we can compare two algorithms by examining their growth rates.

     For example, if we determine that the expression

     T(N) = 2N2 + N - 5

expresses the relationship between processing time and N, we say that the algorithm is an O(N2) algorithm where O is an abbreviation for Order of Magnitude.  (This notation is called big-O Notation.) When an algorithm has order of magnitude of f(n), it means that there is some constant c such that the actual running time of the algorithm, T(N),  is no more than c * f(n).  It is also the case that growth rate of the T(N) will be determined by the growth rate of the fastest growing term (the one with the largest exponent), which in this case is the N2 term.  This means that the algorithm in this example is an O(N2) algorithm rather than an O(2N2) algorithm or an O(N2 + N - 5) algorithm.  In general, it is safe to ignore all constants when determining the order of magnitude for an algorithm.

     To search an array of N elements for a target, we have to examine all N elements when the target is not present in the array.  If the target is in the array, then we only have to search until we find it.  However, it could be anywhere in the array and it is equally likely to be at the beginning of the array as at the end of the array.  So on average, we have to examine N/2 array elements to locate a target value that is in an array.  This means that an array search is an O(N) process, so the growth rate is linear.

     To determine the efficiency of a sorting algorithm, we normally focus on the number of array element comparisons and exchanges that it requires.  To perform a selection sort on an array with N elements requires N - 1 comparisons during the first pass through the array, N - 2 comparisons during the second pass, and so on.  Therefore, the total number of comparisons is represented by the series

     1 + 2 + 3 + ... + N - 2 + N - 1 

From your mathematics courses you may recall that the value of this series with N - 1 elements, whose first element is 1 and whose last element is N - 1, can be expressed in closed form as

     (N - 1) * ((N - 1) + 1)   (N - 1) * N 

     ----------------------- = ----------- = N2/2 - N/2

                2                   2

     The number of comparisons performed in sorting an array of N elements using selection sort is always the same; however, the number of array element exchanges varies depending on the initial ordering of the array elements.  During the search for the kth smallest element, the inner for loop sets IndexOfMin to the index of the kth smallest element in the array.  If IndexOfMin is set to k, this means that the kth smallest element is already in its correct place, so no exchange takes place.  If this never happens, there will be one exchange at the end of each iteration of the outer loop or a total of N - 1 exchanges (worst-case situation).  If the array happens to be sorted before procedure SelectSort is called, all its elements will be in their proper place, so there will be zero exchanges (best-case situation).  Therefore, the number of array element exchanges for an arbitrary initial ordering is between zero and N - 1 which is O(N).

     Because the dominant term in the expression for the number of comparisons shown earlier is N2/2, selection sort is considered an O(N2) process and the growth rate is quadratic (proportional to the square of the number of elements).  What difference does it make whether an algorithm is an O(N) process or an O(N2) process?  Table 2.3 evaluates N and N2 for different values of N.  A doubling of N causes N2 to increase by a factor of 4.  Since N increases much more slowly with N, the performance of an O(N) algorithm is not as adversely affected by an increase in N as is an O(N2) algorithm.  For large values of N (say 100 or more), the  differences in performance for an O(N) and O(N2) algorithm are significant.

Table 2.3  Table of Values of N and N2

_________________________________________________________

         N          N2

          2           4

          4          16

          8          64

         16         256

         32        1024

         64        4096

        128       16384

        256       65536

        512      262144

__________________________________________________________

     Other factors besides the number of comparisons and exchanges affect an algorithm's performance.  For example, one algorithm may take more time preparing for each exchange or comparison than another.  One algorithm might only need to swap subscript values to complete an exchange, whereas another algorithm might need to swap the array elements themselves to complete an exchange.  The latter can be more time-consuming, since the amount of data which must be copied between memory locations is potentially much greater.  Another measure of efficiency is the amount of memory required by an algorithm.  Chapters 12 and 13 discuss additional techniques for searching and sorting which are considerably more efficient than the simple ones discussed so far.

Exercises for Section 2.6

1.  Determine how many times the cout function called in each

    fragment below.  Indicate whether the algorithm is O(N) or O(N2).

     a.   for (I = 1; I <= N; I++)

            for (J = 1; J <= N; J++)

              cout << I << J << "\n";

     b.  for (I = 1; I <= N; I++)

           for (J = 1; J <= 2; J++)

             cout << I << J << "\n";

     c.  for (I = 1; I <= N; I++)

           for (J = N; J >= I; J--)

             cout << I << J << "\n";

Programming

1. Write a program that compares the values of Y1 and Y2 below for

   values N up to 100 in increments of 10.  Does the result surprise

   you?

       Y1 = 100N + 10

       Y2 = 5N2 + 2

2.7  Timing Program Execution 

An alternative way of examining algorithm performance is by measuring the time required for a program to execute.  If there are several factors which can affect the performance of an algorithm, your need to plan your timing experiments so that only factor is allowed change at a time.  For example, you might suspect that the execution performance of two sorting algorithms may be affected by both size of the array size and the initial order of the data being sorted.  To be fair, you should examine the time required by each algorithm to sort identical copies of the same array.  In your experiments you might decide to fix the array size at some reasonably large value and then examine the times required by each algorithm sort the array when it has one of several different initial data orderings (eg. already sorted, inversely ordered, and randomly ordered).  You also might decide to select a single initial data ordering and then examine the time required by each algorithm to sort arrays of several different sizes, having that data ordering.

     The Turbo C++ library time.h contains a function clock which allows a program to obtain the time from the computer system's internal clock.  Unfortunately, clock returns the time as the number of "clock ticks" since the beginning of program execution. To translate the information returned by clock to seconds, the value it returns needs to be divided by the value of the macro CLK_TCK (which is also defined in the time.h library).

     Timing an algorithm involves implementing the algorithm in C++ program which is a client of the time.h library.  By saving the values returned by clock before and after algorithm execution it is possible to compute it's execution time.  The algorithm's execution time is obtained by subtracting the time execution begins from the time execution terminates as shown in Figure 2.14.  By dividing this difference by CLK_TCK we can determine the algorithm execution time in seconds.  

Figure 2.14  Skeletal Program for Computing 

________________________________________________________________

#include <time.h>

#include <iostream.h>

void main()

{

  clock_t Start;    //time algorithm execution begins

  clock_t End;      //time algorithm execution ends

  float TotalTime;  //total algoritm execution time in seconds

  Start = clock();  //save system time in clock ticks

  //insert algorithm being timed here

  End = clock();    //save system time in clock ticks

  //compute elapsed execution time in seconds

  TotalTime = ((End - Start) / CLK_TCK);

  cout << "The time was: " << TotalTime << " seconds\n";

}

________________________________________________________________

     You need to be very careful in comparing the execution times of algorithms run on two different computer systems, since execution times are influenced by both the characteristics of the computer hardware and the operating system used.  For example, execution times measured on multi-user systems (like local area networks) are greatly affected by the number of persons using the computer system (or network) at any given time.

      You also need to be careful in the comparing execution times of algorithms which depend on communication with external devices like printers or disk drives.  If you are not careful you may end up timing the operational speed of the device, rather than execution speed of the algorithm.

Execution Profilers

Some computing systems contain programs called execution profilers. Some versions of Turbo C++ include an execution profiler.  Typically an execution profiler automatically counts the number of times a program's functions are called.  The profiler might also keep track of how much time was spent executing each function.  The execution times obtained from an execution profiler are subject to many of the same limitations we mentioned earlier.  Despite these limitations, comparing execution times of algorithms can provide some insight into their relative efficiencies.  This is especially useful for algorithms whose complexity (order of magnitude) cannot be determined with absolute certainty. 

Exercises for Section 2.7

Programming

1. Compare the execution times required to compute the square roots

   of the numbers 1 to 10000 using a 

     a. for loop

     b. while loop

2. Modify the program you developed in programming exercise 1 so that

   you include the execution times include the additional time

   required to write each square root a disk file.

Chapter Review

In this chapter we discussed methods of assessing program correctness and efficiency.  We discussed planning for testing, selection of test teams, structured walkthroughs, black box testing, white box testing, and integration testing.

     We introduced formal verification as an alternative to testing and described the use of assertions and loop invariants.  In this text we will use informal logical statements about programs and loops to document our programs so that we can better understand them.

     Big-O notation was introduced in this chapter as a means of assessing an algorithm's efficiency.  We discussed timing algorithm execution as an alternative means of determining the efficiency of an algorithm implementation. 

Quick-Check Exercises

1. What are the three broad categories of program bugs discussed in

   this chapter?

2. What is the purpose of desk-checking an algorithm?

3. __________ testing requires the use of test data that exercise

   each statement in a module. 

4. _________ testing focuses on testing the functional

   characteristics of a module.

5. Indicate which of the following may be false:

     loop invariant, while condition, assertion

6. The use of loop invariants is useful for which of the following:

     loop control, loop design, loop verification

7. Write a loop invariant for the following code segment:

     Product = 1;

     Counter = 2;

     while (Counter < 5)

     {

       Product = Product * Counter;

       Counter = Counter + 1

     }

8. Determine the order of magnitude for an algorithm whose running

   time is given by the expression: T(N) = 3N4 - 2N2 + 100N + 37

Answers to Quick-Check Exercises

1. syntax errors, run-time errors, logic errors.

2. to increase the likelihood of finding program logic errors.

3. white box

4. black box

5. while condition

6. loop design, loop verification

7. //invariant: 

   //  Counter <= 0 and Product contains product of 

   //  positive integers < Counter.

8. O(N4)

Review Questions

1. Describe a technique for to prevent a run-time error caused by the

   user typing a bad character while entering a numeric value.

2. Describe the differences between top-down and bottom-up testing.

3. Briefly describe a test plan for the telephone directory program

   described in Chapter 1. Assume that integration testing is used.

4. Which of the following statements is incorrect?

   a. Loop invariants are used in loop verification.

   b. Loop invariants are used in loop design.

   c. A loop invariants is always an assertion.

   d. An assertion is always a loop invariant.

5. Write a procedure which counts the number of adjacent data items

   out of place in an array (assume increasing order is desired).

   Include loop invariants and any other assertions necessary to

   verify that the procedure is correct.

6. Write a big-Oh expression for the algorithm shown below. 

     for (I = 1; I <= N; I++) do

       for (J = 1; J <= N;; J++)

         for (K = N; K >= 1; K--)

         {

           Sum = I + J + K;

           cout << Sum;

         } 

Programming Projects

1. Write as program which determines the average time required to

   successfully locate an integer in an array of 100 unordered

   integers using sequential search. Your program should also

   compute the average time required for a failed search in the

   same array. Your each average time should be based on trials

   involving searching for at least 50 different numbers.

2. Add statements to project 1 which will let you determine the

   average number of array locations which were examined in the

   successful and unsuccessful searches.

3. Redo project number 2 using a array of integers sorted in

   ascending order. Modify the sequential search algorithm to halt a

   search as soon as the array values are larger than the value being

   sought. 

4. Write a program which allows you to examine the effects of array

   size and initial data order when selection sort operates on an

   array of integers. Test two different array sizes (N = 50 and

   N = 100) and three different array orderings (ascending order,

   inverse order, and random order). This should produce six test

   times. The C++ function rand from stdlib.h be helpful in building

   the randomly ordered arrays.

5. Add statements to project 4 which will let you determine the 

   number of comparisons and exchanges which were required to sort

   each array.

6. Redo project 4 using and array of strings, rather than an array

   of integers.

7. Write a set of stub methods for our List object which could be

   used to test the logic of program PHONEDIR.CPP (Fig. 1.13).

