Chapter 6 Stacks

6.1 Stack Abstract Data Type

6.2 Stack Applications

 Case Study: Displaying a String in Reverse Order

 Case Study: Checking for Balanced Parentheses

6.3 Evaluating Expressions

 Case Study: Evaluating Postfix Expressions

6.4 Implementing Stack ADT

6.5 Additional Applications of Stacks

 Case Study: Converting from Infix to Postfix

6.6 Common Programming Errors

 Chapter Review

In Chapters 6 through 10 we introduce several abstract data types of great importance to software engineers. As each abstract data type is introduced, study its attributes and operators very carefully. Look for similarities and differences between the new abstract data type and the abstract data types that we have already discussed in the text. This will help to identify abstract data types which are candidates for reuse via object inheritance.

 When we describe alternative methods of implementing an abstract data type pay close attention to the limitations imposed by the C++ language and those limitations which are present in the in the definition of the abstract data type itself. It is best to compare two implementations of the same abstract data type in terms of their relative execution times, the amount of memory required, and the ease with which they may be programmed.

 In this chapter we illustrate how to use an abstract data type known as a stack and how to implement a stack abstract data type as a C++ class. When we discussed recursion in Chapter 5, we introduced the stack as a useful data structure for storing the actual parameters passed in each call to a recursive function (see Section 5.1). A stack provides a convenient mechanism for storing information (or dishes in a cafeteria); we can access only the top item in a stack and we can do this only when data in the stack is to be accessed in the reverse order from which it was stored in stack.

6.1 Stack Abstract Data Type

In this section we will discuss a data abstraction, the stack, that is very useful in computer science applications such as writing compilers. We already introduced the stack in Section 5.1 and discussed how stacks might be used to implement recursion.

 A stack is characterized by the property that at any one time only the top element of the stack is accessible. In a stack the top element of the stack is always the data value which was most recently stored in the stack. Sometimes this storage

policy is known as "last-in, first-out" or LIFO. Some of the operations that we might wish to perform on a stack are summarized in Table 6.1.

Table 6.1 Specification of Abstract Data Type Stack

--

Elements

A stack consists of a collection of elements that are all the same data type.

Structure

The elements of a stack are ordered according to when they were placed on the stack. Only the element that was last inserted into the stack may be removed or examined. New elements are inserted at the top of the stack.

Operators

In the descriptions below we will assume the following parameters:

 X has the same data type as the stack elements

 Success is type int and indicates whether or not the

 operation succeeds.

Stack.Stack(): Creates an empty stack.

Stack.Push(X, &Success): If the stack is not full, the value in X is placed on the top of the stack and Success is set to True. Otherwise, the top of the stack is not changed and Success is set to False.

Stack.Pop(&X, &Success): If the stack is not empty, the value at the top of the stack is removed and its value is placed in X, and Success is set to True. If the stack is empty, X is not defined and Success is set to False.

Stack.Retrieve(&X, &Success): If the stack is not empty, the value at the top of the stack is copied into X, and Success is set to True. If the stack is empty, X is not defined and Success is set to False. In either case, the stack is not changed.

Stack.IsEmpty(): Returns True if the stack is empty; otherwise, returns False.

Stack.IsFull(): Returns True if the stack is full; otherwise, returns False.

--

 As before, we can illustrate how these operators work and use them in a client program without worrying about the details of how the stack is represented in memory. We will discuss one internal representation for a class Stack in Section 6.4 and implement the stack operators. Since we would like to be able to manipulate different types of data objects using a stack, we will use the identifier StackElement to represent the type of each stack element. Each client program must import the data type definition for StackElement and the class definition for Stack from header file stack.h, before trying to use variables of these types.

 A client program can allocate multiple stacks by declaring several instances of our Stack. Because StackElement can only be declared once in a program, all stacks used in a particular program must have the same type of element. This limitation would not be present, if we had implemented our Stack using templates instead.

 Our class constructor Stack() must be called before a stack can be processed. Stack() creates a stack that is initially empty. If S is an instance of our class Stack, the statements

 Stack S;

 if (S.IsEmpty())

 cout << "Stack is empty\n');

display the message Stack is empty.

Example 6.1: A stack S of character elements is shown in Fig. 6.1. This stack currently has four elements; the element '2' was place on the stack before the other three elements; '*' was the last element placed on the stack.

Figure 6.1 Stack S

 | * |

 | C |

 | + |

 | 2 |

 S

 For stack S in Fig. 5.1, the value of S.IsEmpty() is 0 (False). The value of S.IsFull() is 0 (False) if stack S can store more than four elements; otherwise, the value of S.IsFull() is 1 (True). The method call

 S.Retrieve(X, Success);

stores '*' in X (type char) without changing S. The method call

 S.Pop(X, Success);

removes '*' from S and stores it in X. The new stack S contains three elements and is shown in Fig. 6.2.

Figure 6.2 Stack S After Pop Operation

__

 | C |

 | + |

 | 2 |

 S

__

 The method call

 S.Push ('/', Success);

pushes '/' onto the stack; the new stack S contains four elements and is shown below. The value of Success (type int) after each of the operations discussed above should be 1 (True).

Figure 5.3 Stack S After Push Operation

__

 | / |

 | C |

 | + |

 | 2 |

 S

__

Exercises for Section 6.1

Self-check

1. Assume that the stack S is defined as in Fig. 6.3 and perform

 the sequence of operations below. Indicate the result of each

 operation and the new stack if it is changed. Rather than

 draw the stack each time, use the notation |2+C/ to represent

 the stack in Fig. 6.3.

 S.Push('$', Success);

 S.Push('-', Success);

 S.Pop(NextCh, Success);

 S.Retrieve (NextCh, Success);

6.2 Stack Applications

In this section we will study some client programs that use stacks. These programs illustrate some simple applications in which the stack abstract data type is quite useful.

Case Study: Displaying a String in Reverse Order

Problem

A reading instructor is studying dyslexia and would like a program that displays a word or sentence in reverse order.

Design Overview

A stack of characters is a good data structure for such a program. If we first push each data character onto a stack and then pop each character and display it, the characters will be displayed in reverse order. The sequence of characters is displayed in reverse order because the last character pushed onto the stack is the first one popped. For example the diagram in Fig. 6.4 shows the stack S after the letters in the string "house" are processed beginning with the letter 'h' first. The first letter that will be popped and displayed is e, the next letter is s, and so on.

Figure 6.4 Pushing the characters "house" on a Stack

__

 | e |

 | s |

 | u |

 | o |

 | h |

 S

Data Requirements

Problem Inputs

Each data character

Problem Outputs

Each character on the stack

Program variables

The stack of characters (Stack S)

Algorithm

1. Create an empty stack of characters.

2. Push each data character onto a stack.

3. Pop each character and display it.

4. Indicate whether the stack is empty or full.

Program Structure

 The system structure chart (see Fig. 6.5) shows that the constructor Stack() performs step 1, function FillStack performs step 2, and function DisplayStack performs step 3. FillStack and DisplayStack call methods Push and Pop from our Stack class library. Methods Stack.IsEmpty and Stack.IsFull from are called to perform step 4.

Figure 6.5 System Structure Chart for PrintReverse

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

 ³Display string³

 ³in reverse ³

 ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÁÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

 ³ S S³ S ³ S ³

 ³ ³ ³ ³

 ³ ³ ³ ³

 ÚÄÄÄÄÄÁÄÄÄÄÄ¿ ÚÄÄÄÁÄÄÄÄ¿ ÚÄÄÄÄÁÄÄÄÄ¿ ÚÄÄÄÄÄÁÄÄÄÄÄÄ¿

 ³Create an ³ ³Fill the³ ³Display ³ ³Indicate ³

 ³empty stack³ ³stack ³ ³the stack³ ³stack status³

 ÀÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÂÄÄÄÄÙ ÀÄÄÄÂÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÄÙ

 CreateStack FillStack³ ³ DisplayStack ³

 ³ ³ ³

 ³ ³ ÚÄÄÄÄÁÄÄÄÄ¿

 NextCh³ S S ³ NextCh ³ ³

 ³ ³ ³ ³

 ÚÄÄÄÄÁÄÄÄÄ¿ ÚÄÄÄÁÄÄÄÄÄ¿ ÚÄÄÁÄÄÄ¿ ÚÄÄÁÄÄ¿

 ³Push a ³ ³Pop a ³ ³Stack ³ ³Stack³

 ³character³ ³character³ ³empty?³ ³full?³

 ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÙ

 Push Pop IsEmpty IsFull

__

Coding the Main Program

 The main program and its procedures are shown in Fig. 6.6. The type declarations for StackElement (type is char) and class Stack must be imported along with the stack method implementations. Functions FillStack and DisplayStack are described after the program.

Figure 6.6 Program PrintReverse

__

#include <iostream.h>

#include "stack.h"

//insert FillStack and DisplayStack here

void main()

//Program read sequence of characters and displays it in

//reverse order.

{

 Stack S; //create empty stack

 FillStack(S); //fill the stack

 DisplayStack(S); //display characters in reverse order

 //Display status of stack S.

 if (S.IsEmpty())

 cout << "Stack is empty, operation succeeds.\n";

 else

 if (S.IsFull())

 cout << "Stack is full, reversal failed.\n";

}

Enter a string of one or more characters.

Press return when done.

This is a short string.

.gnirts trohs a si sihT

Stack is empty, operation succeeds.

Coding the Procedures

 The posttest loop in function FillStack (see Fig. 6.7) reads each data character (at least one) into NextCh and pushes it onto the stack. The if statement displays an error message in the event that the input string is too long. This would happen if the program user entered more characters than the stack capacity before pressing return.

Figure 6.7 Function FillStack

__

void FillStack(Stack &S)

//Reads data characters and pushes them onto the stack.

//Pre : Stack S is defined.

//Post: Each data character read is pushed onto stack S.

{

 char NextCh; //next character read

 int Success; //flag

 cout << "Enter a string of one or more characters.\n";

 cout << "Press return when done.\n";

 cin.get(NextCh); //read first character

 do

 {

 S.Push(NextCh, Success); //push character on stack

 cin.get(NextCh); //read next character

 }

 while((NextCh != '\n') && (Success));

 //Print error message is stack overflows.

 if(!Success)

 cout << "Stack overflow error-string too long.\n";

}

 The while loop in function DisplayStack (see Fig. 6.8) pops each character from the stack into NextCh and then displays it. The loop is repeated as long as there are characters remaining on the stack (Success is 1 or True). After DisplayStack is finished, the stack should be empty.

 Figure 6.8 Function DisplayStack

__

void DisplayStack(Stack &S)

//Pops each stack character and displays it.

//Pre : Stack S is defined.

//Post: Each character is displayed and stack S is empty.

{

 char NextCh; //next character to display

 int Success; //flag

 S.Pop(NextCh, Success);

 while(Success)

 {

 cout << NextCh;

 S.Pop(NextCh, Success);

 }

 cout<<"\n";

}

__

Testing

 It would be a good idea to see what happens when the stack overflows. This can be done by setting MaxStack to a small value (say 10).

Case Study: Checking for Balanced Parentheses

One application of a stack is to determine whether an expression is balanced with respect to parentheses. For example, the expression

 (a + b * (c / (d - e))) + (d / e)

 1 2 3 321 1 1

is balanced. We can solve this problem without using a stack by ignoring all characters except the symbols "(" and ")". We should add one to a counter for each open parenthesis that follows another open parenthesis and should subtract one for each close parenthesis that follows another close parenthesis. Since we are ignoring all other symbols, the parentheses being considered do not have to be consecutive characters. The count should begin and end at one.

 This task becomes more difficult if we allow different types of symbols to be used as parentheses. For example, the expression

 (a + b * {c / [d - e]}) + (d / e)

is balanced whereas the expression

 (a + b * {c / [d - e}}) + (d / e)

is not because the subexpression [d - e} is incorrect.

Problem

The set of open parentheses includes the symbols {, [, (. An expression is balanced if each subexpression that starts with the symbol { ends with the symbol }, and the same statement is true for the symbol pairs [,] and (,). Another way of saying this is that the unmatched open parenthesis that is nearest to each close parenthesis must have the correct shape (e.g. if } is the close parenthesis in question, then the symbol { must be the nearest unmatched open parenthesis.)

Design Overview

With stacks this problem is fairly easy to solve. We can scan the expression from left to right, ignoring all characters except for parentheses. We will push each open parenthesis onto a stack of characters. When we reach a close parenthesis, we will see whether it matches the symbol on the top of the stack. If the characters don't match or the stack is empty, there is an error in the expression. If they do match, we will continue the scan.

Data Requirements

Problem Inputs

The expression to be checked for balanced parentheses

 (char Expression[])

Problem Outputs

The function result indicates whether the parentheses in

 Expression are balanced

Program Variables

The stack of open parentheses (Stack ParenStack)

A flag indicating whether parentheses are balanced (int Balanced)

The next character in Expression (char NextCh)

The index of the next character (int Index)

The open parenthesis at the top of the stack (char Open)

The close parenthesis being matched (char Close)

Algorithm

1. Create an empty stack of characters.

2. Assume that the expression is balanced

 (Balanced is 1 or True).

3. while the expression is balanced and still in the string do

 begin

 4. Get the next character in the data string.

 5. if the next character is an open parenthesis then

 6. Push it onto the stack

 else if the next character is a close parenthesis then

 begin

 7. Pop the top of the stack

 8. if stack was empty or its top was incorrect then

 9. Set Balanced to 0 (or False).

 end

 end

10. if the expression is balanced then

 11. There is an error if the stack is not empty.

 The if statement at step 5 above tests each character in the expression, ignoring all characters except for open and close parentheses. If the next character is an open parenthesis, it is pushed onto the stack. If the next character is a close parenthesis, the nearest unmatched open parenthesis is retrieved (by popping the stack) and it is compared to the close parenthesis.

Coding

Fig. 6.9 shows a function that determines whether its input parameter (an expression) is balanced. The if statement in the while loop tests for open and close parentheses as discussed earlier. Each open parenthesis is pushed onto stack ParenStack. For each close parenthesis, procedure Pop retrieves the nearest unmatched open parenthesis from the stack. If the stack was empty, Pop sets Balanced to False, causing the while loop exit. Otherwise, the case statement sets Balanced to indicate whether the character popped matches the current close parenthesis. After loop exit occurs, the function result is defined. It is true only when the expression is balanced and the stack is empty.

Figure 6.9 Function IsBalanced

__

#include <iostream.h>>

#include <string.h>

#include "stack.h"

int IsBalanced(char Expression[])

//Determines where expression is balanced with respect

//to parentheses.

//Pre : Expression is defined.

//Post: Returns True if expression is balanced;

// otherwise returns False.

{

 Stack ParentStack; //stack of open parentheses

 char NextCh; //next character in Expression

 char Close; //close parenthesis to be matched

 char Open; //open parenthesis on top of stack

 int IsBal; //program flag

 int Index; //index to Expression

 int Balanced; //program flag

 Balanced = True;

 Index = 0;

 while(Balanced && (Index < strlen(Expression)))

 {

 //invariant:

 // all closing parentheses so far were matched and

 // Index <= strlen(Expression) + 1

 NextCh = Expression[Index]; //get next character

 if((NextCh == '(') || (NextCh == '[') || (NextCh == '{'))

 //stack parenthesis

 ParentStack.Push(NextCh, Balanced);

 else if

 ((NextCh == ')') || (NextCh == ']') || (NextCh == '}'))

 {

 Close = NextCh;

 //get nearest unmatched open parenthesis

 ParentStack.Pop(Open, Balanced);

 if (Balanced)

 switch(Close) //check for matching parenthesis

 {

 case ')': Balanced = (Open == '(');

 break;

 case ']': Balanced = (Open == '[');

 break;

 case '}': Balanced = (Open == '{');

 break;

 }

 }

 Index = Index + 1; //access next character

 }

 //define function result

 if (Balanced)

 IsBal = ParentStack.IsEmpty();

 else

 IsBal = False;

 return IsBal;

}

__

Testing

 You will have to write a driver program to test function IsBalanced. The driver program will have to import the declarations for StackElement (type is char) and Stack (from stack.h). It will also have to import the stack operators and string operators that are called by IsBalanced. Make sure you use a variety of balanced and unbalanced expressions to test IsBalanced including expressions without parentheses.

Exercises for Section 6.2

Self-check

1. Trace the execution of function IsBalanced for each of the

 expressions below. Your trace should show the stack after

 each push or pop operation. Also show the values of Balanced,

 Open, and Close after each close parenthesis is processed.

 (a + b * {c / [d - e]}) + (d / e)

 (a + b * {c / [d - e}}) + (d / e)

Programming

1. Write a main program to test function IsBalanced.

6.3 Evaluating Expressions

 One task of a compiler is to evaluate arithmetic expressions. We will discuss one approach to expression evaluation in this section. Some of you may use calculators that evaluate postfix expressions. A postfix expression is one in which each operator follows its operands. We will discuss postfix expressions further in Chapter 10; however, for the time being you should get a pretty good idea of what a postfix expression is by studying the examples in Table 6.2. The braces under each expression are added to help you visualize the operands for each operator. The more familiar infix expression corresponding to each postfix expression is shown in the middle column of the table.

Table 6.2 Table of Postfix Expressions

Postfix Expression Infix Expression Value

 5 6 * 5 * 6 30

ÀÄÄÄÄÄÙ

 5 6 1 + * 5 * (6 + 1) 35

³ ÀÄÄÄÄÄÙ ³

ÀÄÄÄÄÄÄÄÄÄÙ

 5 6 * 10 - (5 * 6) - 10 20

³ÀÄÄÄÄÄÙ ³

ÀÄÄÄÄÄÄÄÄÄÄÄÙ

 4 5 6 * 3 / + 4 + ((5 * 6) / 3) 14

³³ ÀÄÄÄÄÄÙ ³ ³

³ÀÄÄÄÄÄÄÄÄÄÄÄÙ ³

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

__

 The advantage of postfix form is that there is no need to group subexpressions in parentheses or to consider operator precedence. The braces in Table 6.2 are for our convenience and are not required. We will write a program that evaluates a postfix expression next.

Case Study: Evaluating Postfix Expressions

Problem

Simulate the operation of a calculator by reading an expression in postfix form and displaying its result. Each data character will be a blank, a digit character, or one of the operator characters: +, -, *, / .

Design Overview

Using a stack of integer values makes it easy to evaluate the expression. Our program will push each integer operand onto the stack. When an operator is read, the top two operands are popped, the operation is performed on its operands, and the result is pushed back onto the stack. The final result should be the only value remaining on the stack when the end of the expression is reached.

Data Requirements

Problem Inputs

The expression to evaluate (char Expression[])

Problem Outputs

The expression value (int Result)

Program Variables

The stack of integer operands (Stack OpStack)

Program flag indicating result of a stack operation (int Success)

The next character in Expression (char NextCh)

The index to the next character (int Index)

The next integer value in Expression (int NewOp)

The two operands of an operator (int Op1, Op2)

Algorithm

1. Read the expression string.

2. Create an empty stack of integers.

3. Set Success to 1 (or True).

4. while Success is True and not at the end of the expression do

 begin

 5. Get the next character.

 6. if the character is a digit then

 begin

 7. Get the integer that starts with this digit.

 8. Push the integer onto the stack.

 end

 else if the character is an operator then

 begin

 9. Pop the top two operands into.

 10. Evaluate the operation.

 11. Push the result onto the stack.

 end

 end

12. Display the result

 Fig. 6.10 shows the evaluation of the third expression in Table 6.2 using this algorithm. The arrow under the expression points to the character being processed; the stack diagram shows the stack after this character is processed.

Figure 6.10 Evaluating a Postfix Expression

__

Expression Action Stack

5 6 * 10 - Push 5 | 5 |

^ ---

5 6 * 10 - Push 6 | 6 |

 ^ | 5 |

5 6 * 10 - Pop 6 and 5, |30 |

 ^ evaluate 5 * 6, ---

 push 30

5 6 * 10 - Push 10 |10 |

 ^ |30 |

5 6 * 10 - Pop 10 and 30, |20 |

 ^ evaluate 30 - 10, ---

 push 20

5 6 * 10 - Pop 20, | |

 ^ stack is empty, ---

 result is 20

__

Refinements

The stack operators perform algorithm steps 2, 8, 9, 11, and 12. Steps 7 and 10 are the only algorithm steps that require refinement. Step 7 is performed by function GetInteger and step 10 by function Eval. The system structure chart in Fig. 6.11 shows the data flow between these two subprograms and the main

program.

Figure 6.11 System Structure Chart for Program PostFix

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

 ³Evaluate a ³

 ³postix expression ³

 ÀÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÙ

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

 ³ ³

 Expression,³ NewOp NextCh,³ Result

 Index ³ Index Op1, Op2³

 ³ ³

 ³ ³

 ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÁÄÄÄÄÄÄÄÄ¿

 ³Get the integer ³ ³Apply operator³

 ³starting at index³ ³to operands ³

 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 GetInteger Eval

__

Coding the Main Program

The main program is shown in Fig. 6.12. Besides the operators mentioned earlier, the class Stack and the typedef StackElement must be imported into the main program.

 Each time stack S is manipulated, the flag Success is set to indicate success or failure of that operation. If Success is False (0), the program displays an error message and terminates the expression evaluation. If the final value of Success is True (1) and the stack is empty, the result is displayed.

Figure 6.12 Program Postfix and Sample Run

#include <ctype.h>

#include <string.h>

#include <iostream.h>

#include "stack.h"

void main()

//Evaluates postfix expression

{

 Stack OpStack; //stack of integers

 const StrLength = 20;

 char Expression[StrLength]; //expression to be evaluated

 char NextCh; //next data character

 int Index; //index of next character

 int Op1; //operand values

 int Op2;

 int NewOp; //new operand for stack

 int Result; //result of operator evaluation

 int Success; //flag for stack operation

 char IntString[StrLength]; //integer string representation

 cout << "Enter your expression > ";

 cin.getline(Expression, StrLength, '\n');

 Index = 0;

 Success = True;

 while (Success && (Index < strlen(Expression)))

 {

 //invariant:

 // OpStack contains all unprocessed operands and results;

 // Index <= strlen(Expression) + 1

 NextCh = Expression[Index]; //get next character

 //isdigit() from ctype.h checks if character is digit 0-9

 if (isdigit(NextCh))

 {

 GetInteger(Expression, Index, NewOp); //get value

 OpStack.Push(NewOp, Success); //push value

 if (!Success)

 cout<< "Stack overflow error.\n";

 }

 else if ((NextCh == '+') || (NextCh == '-') ||

 (NextCh == '*') || (NextCh == '/'))

 {

 OpStack.Pop(Op2, Success);

 OpStack.Pop(Op1, Success);

 if (!Success)

 cout << "Invalid expression.\n";

 else

 {

 Result = Eval(NextCh, Op1, Op2);

 OpStack.Push(Result, Success);

 if (!Success)

 cout << "Stack overflow\n";

 }

 }

 Index++; //next character

 }

 if (Success)

 OpStack.Pop(Result, Success); //get result

 if ((Success) && (OpStack.IsEmpty()))

 cout << "Expression value is " << Result << '\n';

 else

 cout << "Invalid expression.\n";

}

Enter your expression > 5 6 * 10 -

Expression value is 20

Coding the Subprograms

 Procedure GetInteger (see Fig. 6.13) accumulates the integer value of a string of consecutive digit characters and returns this value through argument NewOp. The assignment statement

 NewOp = 10 * NewOp + int(NextCh) - int('0');

adds the numeric value of the digit character in NextCh to the numeric value being accumulated in NewOp. For example, if the current value of NewOp is 15 and NextCh is '3', NewOp gets the value 153. When GetInteger returns to the main program, Index points to the last digit of the number just processed.

Figure 6.13 Function GetInteger

void GetInteger(char Expression[], int &Index, int &NewOp)

//Returns in NewOp the integer whose first digit is at

//position Index.

//Pre : Expression and index are defined and Expression[Index]

// is a digit.

//Post: Index points to last digit of number whose first digit

// is pointed to by the initial value of Index and NewOp is

// the value of that number.

{

 char NextCh; //next character to process

 NewOp = 0;

 NextCh = Expression[Index];

 while(isdigit(NextCh) && (Index < strlen(Expression)
))

 //invariant:

 // Last character in NextCh was a digit and

 // Index < strlen(Expression) and

 // NewOp is numerical value of all digits processed so far.

 {

 NewOp = 10 * NewOp + int(NextCh) - int('0');

 Index++;

 NextCh = Expression[Index];

 }

 if (!isdigit(NextCh))

 Index = Index - 1; //point to last digit

}

 Whenever an operator is encountered, the main program pops its two operands off the stack and calls function Eval (see Fig. 6.14) to compute the result of applying the operator (passed through NextCh) to its operands (passed through Op1, Op2). The case statement in function Eval selects the appropriate operation and performs it.

Figure 6.14 Function Eval

int Eval(char NextCh, int Op1, int Op2)

//Applies operator NextCh to operands Op1 and Op2.

//Pre : NextCh is an operator; Op1 and Op2 are defined.

//Post: If NextCh is '+', returns Op1 + Op2, and so on.

{

 int Result;

 switch(NextCh)

 {

 case '+': Result= Op1 + Op2;

 break;

 case '-': Result = Op1 - Op2;

 break;

 case '*': Result = Op1 * Op2;

 break;

 case '/': Result = Op1/Op2;

 break;

 default: cout<<"invalid expression\n";

 }

 return Result;

}

Testing

 You will have to import the necessary data types and operators in order to test program postfix.cpp. See what happens when the expression is not a valid postfix expression or it contains characters other than those expected.

Exercises for Section 6.3.

Self-check

1. Trace the evaluation of the last expression in Table 6.2.

 Show the stack each time it is modified and show how the

 values of NewOp and Result are changed as the program

 executes.

Programming

1. Modify the program to handle the exponentiation operator

 which will be indicated by the symbol ^. Assume that the

 first operand is raised to the power indicated by the second

 operand.

6.4 Implementing A Stack

 In this section, we will discuss how we might implement a stack in C++. We will begin with the internal representation for a stack.

Declaration for Type Stack

The class Stack is declared in the header file section for our stack library (see Fig. 6.15). The array data member named Items provides storage for the stack elements. Top is an index to this array, and Top selects the element at the top of the stack. We can store up to MaxStack (value is 100) elements in an Stack object instance.

Figure 6.15 Header File stack.h for Stack of Characters

//Header file for Stack class

const MaxStack = 100;

const True = 1;

const False = 0;

typedef char StackElement;

class Stack

{

 protected:

 StackElement Items[MaxStack];

 int Top;

 public://methods

 Stack();

 void Push(StackElement X, //input - data to insert

 int &Success); //output - program flag

 void Pop(StackElement &X, //output - data removed

 int &Success); //output - program flag

 void Retrieve(StackElement &X, //output - data retrieved

 int &Success); //output - program flag

 int IsEmpty();

 int IsFull();

};

 The statement

typedef char StackElement;

defines the data type StackElement. StackElement can be a standard type or a user-defined class with methods of its own.

 As always, storage is not allocated until a Stack instance is declared. The variable declaration

 Stack S;

allocates storage for a stack, S, of up to 100 elements of type StackElement. Note that the storage space for the entire stack is allocated at one time even though there won't be any objects on the stack initially.

 The abstract stack S on the left in Fig. 6.16 would be represented in memory by the struct shown on the right. S.Top is 2, and the stack consists of the subarray S.Items[0..2]; the subarray S.Items[3..99] is currently undefined.

Figure 6.16 Stack Containing Three Elements

 ÚÄÄÄ¿

 S.Top ³ 2 ³

 | { | ÃÄÂÄÅÄÂÄ¿ ÚÄ¿

 | (| S.Items ³[³(³{³?³...³?³

 | [| ÀÄÁÄÁÄÁÄÙ ÀÄÙ

 --- |

 S S.Items[S.Top]

--

The array element S.Items[S.Top] contains the character value '{' which is the value at the top of the stack.

 We can change the capacity of a stack by redefining the constant MaxStack. Also, we can change the stack elements to another simple type or a structured type by changing the definition of StackElement in header file stack.h. If we use the definition

 typedef int StackElement;

an instance of our Stack class will be able to store up to 100 integer values.

Example 6.2: Fig. 6.17 shows the effect of the statement

 S.Push('(', Success);

where the initial stack S is shown on the left. Before Push is executed, S.Top is 2 so S.Items[2] is the element at the top of the stack. Method Push must increment S.Top to 3 so the new item ('(') will be stored in S.Items[3] as shown on the right of Fig. 5.16.

Figure 6.17 Pushing '(' onto Stack S

___​​​________________________

 after Push

 before Push ÚÄÄÄ¿

 ÚÄÄÄ¿ S.Top ³ 3 ³

 S.Top ³ 2 ³ | (| ÃÄÂÄÅÄÂÄÂÄ¿ ÚÄ¿

| { | ÃÄÂÄÅÄÂÄ¿ ÚÄ¿ | { | S.Items ³ ³(³{³(³?³...³?³

| (| S.Items ³[³(³{³?³...³?³ | (| ÀÄÁÄÁÄÁÄÁÄÙ ÀÄÙ

| [| ÀÄÁÄÁÄÁÄÙ ÀÄÙ | [| |

 --- | --- S.Items[S.Top]

 S S.Items[S.Top] S

__​____

Stack Operators

 The stack methods manipulate the array Items using Top as an index to the array. Their implementation is fairly straightforward. You should have little difficulty in reading and understanding the stack methods shown in the implementation file stack.cpp (see Fig. 6.18).

Figure 6.18 Implementation File stack.cpp

__

#include "stack.h"

Stack::Stack()

//Default constructor, creates empty stack.

{

 Top = -1;

}

void Stack::Push(StackElement X, int &Success)

//Pushes X onto stack.

//Pre : X is defined and Stack is initialized.

//Post: Sets Success to True to indicate successful push;

// and False to indicate failure.

{

 if (Top >= MaxStack)

 Success = False; //no room on stack

 else

 {

 Top++; //increment stack top pointer

 Items[Top] = X; //copy X to stack

 Success = True;

 }

}

void Stack::Pop(StackElement &X, int &Success)

//Pops top of a stack into X.

//Pre : Stack has been initialized.

//Post: X contains top stack element which has been removed

// from the stack. Success is set to True if pop is

// successful and False if not.

{

 if (Top < 0)

 Success = False; //empty stack

 else

 {

 X = Items[Top]; //pop top of stack into X

 Top--; //decrement top of stack pointer

 Success = True;

 }

}

void Stack::Retrieve(StackElement &X, int &Success)

//Copies value at top of stack to X.

//Pre : Stack is defined.

//Post: X contains top stack element and the stack is

// unchanged. Success set to True for successful

// retrieve and False otherwise.

{

 if (Top < 0)

 Success=0;

 else

 {

 X = Items[Top]; //copy top stack element

 Success = True;

 }

}

int Stack::IsEmpty()

//Returns True if stack is empty and False otherwise.

{

 return(Top < 0);

}

int Stack::IsFull()

//Returns True is stack is Full and False otherwise.

{

 return(Top >= MaxStack);

}

 The constructor Stack() must be used before the stack can be manipulated. In Stack(), the statement

 Top = -1;

initializes a stack by setting its top of stack pointer to -1.

 Method Stack::Push increments the top of stack pointer before pushing a new value onto the stack. Method Stack::Pop copies the value at the top of the stack (denoted by Items[Top]) into X before decrementing the top of stack pointer. Method Stack::Retrieve copies the value at the top of the stack into X without changing the top of stack pointer. Methods Stack::IsFull and Stack::IsEmpty test the top of stack pointer to determine the stack status. When the value of data member Top is greater than or equal to MaxStack there is no more room to store elements in the stack. When the value of Top is -1 the stack is empty.

--

Program Style

Efficiency versus Readability

 Method Push in Fig. 6.18 uses the condition (Top >= MaxStack) to determine whether the stack is full. It would be more readable, but less efficient, to use the method Stack::IsFull to test whether a stack is full. You must use the method Stack::IsFull for this purpose in any client program that manipulates the stack because the stack's internal representation is hidden from a client program. However, it is perfectly reasonable for another stack method to directly manipulate private data members of a stack.

--

Exercises for Section 6.4

Self-check

1. Declare a stack of 50 student records where each record

 consists of a student's name (string of 20 characters), an

 exam score, and a letter grade. Can you use the methods in

 our Stack class to manipulate this stack?

Programming

1. Write a method SizeOfStack that returns the number of

 elements currently on the stack.

6.5 Additional Stack Applications

This section discusses additional applications of stacks which relate to their use in computer science. The first application is a continuation of the expression evaluation case study and shows how to use a stack to convert an expression from infix notation to postfix notation. Next, we discuss how the stack is used to implement recursion in a block structured language like Pascal. Finally, we discuss how to use a stack to convert a recursive procedure to an iterative procedure.

Converting from Infix to Postfix

Since programmers normally write expressions in infix notation, a compiler must convert an infix expression into postfix notation before it can apply the technique of expression evaluation discussed in section 6.3. To complete our discussion of expression evaluation, we will describe a method of doing this that makes extensive use of an operator stack as its central data structure.

Case Study: Converting from Infix to Postfix

Problem

To complete the design of an expression evaluator, we need a set of procedures that convert infix expressions to postfix. For simplicity, we will assume that each operand is a single letter and that the symbol @ appears at the end of the infix expression.

Design Overview

Table 5.1 shows the infix and postfix form of four expressions. For each expression pair, the operands are in the same sequence; however, the placement of the operators changes in going from infix to postfix. For example, in converting A + B * C to its postfix form (A B C * +), we see that the three letters (operands) retain their relative ordering from the infix expression, but the order of the operators is reversed (* first, + second). This means that we should insert the letters in the output expression (postfix) as soon as they are reached in the input expression (infix), but the operators should be placed on a stack before being inserted in the output expression. The use of a stack enables the order of the operators + and * to be reversed as shown in the above example. The data requirements and initial algorithm for function InfixToPost follow.

Data Requirements

Problem Inputs

The expression to convert (char Infix[])

Problem Outputs

The postfix expression (char Postfix[])

A flag indicating success or failure (int ValidInfix)

Local Variables

The operator stack (Stack OpStack)

The current token (char Token)

Initial Algorithm for Procedure InfixToPost

 1. Initialize Postfix to a blank string

 2. Initialize the operator stack to an empty stack

 3. repeat

 4. Get the next token in Infix

 5. if the next token is an operand then

 6. Insert the operand in Postfix

 else if the next token is an operator then

 7. Process the operator

 until the sentinel operator is processed

 8.
Infix is valid if the sentinel operator is the only operator on the stack

 The repeat-until loop executes until the sentinel operator has been processed. The if statement (step 5) differentiates between operands and operators. Step 6 inserts operands directly in Postfix; step 7 executes when the next token is an operator. Step 7 (performed by procedure DoOperator) either pushes the operator onto the stack immediately or inserts in Postfix earlier operators saved on the stack. After the sentinel operator is processed, step 8 sets ValidInfix to True (1) or False (0) depending on the state of the stack. ValidInfix should be True if the only operator on the stack is the sentinel.

Coding for InfixToPost

Fig. 6.19 shows procedure InfixToPost. The statement

 strcpy(Postfix, ""); //initialize Postfix

initializes Postfix to the null string (string of length zero). Function GetToken stores in Token the next non-blank character in

string Infix. The statements

 strncat(Postfix, Empty, 1);

 strncat(Postfix, To, 1);

uses the string concatenation operator (strncat) from library string.h to append a blank character followed by the character in Token to the end of string Postfix (for example, "A B" becomes is the string "A B *" if Token is '*').

Figure 6.19 Procedure Infix to Post with Procedure GetToken

void GetToken(char Infix[], int &Next, char &Token)

//Locates next non-blank character after position Next

//in string Infix.

//Pre : Infix contains a non-blank character after position

// Next and 0 < Next < strlen(Infix).

//Post: Token contains non-blank character and next is

// position of Token within string Infix.

{

 const char Blank = ' ';

 do

 {

 Next++;

 Token = Infix[Next];

 }

 while (Token == Blank);

}

void InfixToPostfix

 (char Infix[], char Postfix[], int &ValidInfix)

//Converts infix expression stored in string Infix to postfix

//expression stored in Postfix.

//Pre : Infix is defined.

//Post: Either Postfix contains valid postfix representation of

// infix expression and ValidInfix is True; or Postfix is

// undefined and ValidInfix is False.

{

 const char Sentinel = '@';

 Stack OpStack; //operator stack

 int Next; //next Infix character position

 char *To; //string version of Token

 char Token; //next token to process

 char TopOp; //operator for top of stack

 int Success; //stack operator flag

 char *Empty = " ";

 strcpy(Postfix, ""); //initialize Postfix

 Next = -1; //start at beginning of Infix

 do

 {

 GetToken(Infix, Next, Token); //get first token

 if((Token >= 'A') && (Token <= 'Z'))

 {

 To = &Token; //insert operand

 strncat(Postfix, Empty, 1);

 strncat(Postfix, To, 1);

 }

 else if ((Token == '+') || (Token == '-') ||

 (Token == '*') || (Token == '/') ||

 (Token == Sentinel))

 DoOperator(Token, OpStack, Postfix);

 else

 {

 cout << "Illegal character in expression "<< Token;

 cout << "\n";

 Token = Sentinel; //force loop exit

 }

 }

 while (Token != Sentinel);

 OpStack.Pop(TopOp, Success);

 ValidInfix = (Success && (TopOp == Sentinel) &&

 (OpStack.IsEmpty()));

}

 The last clause of the nested if statement in Fig. 6.19 executes when Token contains an illegal character. It displays an error message and resets Token to the sentinel, causing loop exit to occur.

 After loop exit occurs, the stack is popped and its contents are stored in TopOp. If the sentinel operator was the only operator remaining on the stack, ValidInfix is set to True; otherwise, ValidInfix is set to False.

Procedure DoOperator

The relative precedence of adjacent operators determines the sequence in which they are performed. Therefore, as part of the processing of each new operator, we should expect to compare its precedence with that of earlier operators stored on the stack. Each new operator will eventually be pushed onto the stack. However, before doing this we will see whether operators currently on the stack have equal or higher precedence than the new operator. If operators on the stack have equal or higher precedence, they should be performed first, so we will pop them off the stack and insert them in the output string (Postfix). When we reach a stacked operator with lower precedence, we will push the new operator on the stack. In the algorithm for function DoOperator below, Token represents the new operator.

Algorithm for Function DoOperator

 repeat

 if the stack is empty then

 Push Token onto the stack

 else

 if Precedence(Token) > Precedence(top of stack) then

 Push Token onto the stack

 else

 begin

 Pop OpStack into TopOp

 Insert TopOp in the output expression

 end

 until Token is pushed onto the stack

 The repeat statement executes until Token is pushed on the stack. This happens in the first pass if the stack is empty or if Token has a higher precedence than the operator on the top of the stack. Otherwise, we pop the top operator from the stack and insert it in the output string. We continue to pop and insert operators until the stack becomes empty or the operator on the top of the stack has a lower precedence than Token. To ensure that all operators are popped from the stack when we reach the sentinel operator, we should give the sentinel the lowest precedence.

 Table 6.3 shows a trace of the conversion of the infix expression A + B * C / D @ to the postfix expression A B C * D / +. Function DoOperator is called when Token is an operator. Function InfixToPost processes all other characters without calling DoOperator. The final value of Postfix shows that * is performed first (operands B and C), / is performed next (operands B * C and D), and + is performed last. The stack contains the sentinel operator after the last call to DoOperator.

Table 5.3 Conversion of A + B * C / D @

__

 Effect on Effect on

Token Action OpStack Postfix

 A Insert A in Postfix. | | A

 + Stack is empty, | + | A

 push + onto stack. ---

 B Insert B in Postfix. | + | A B

 * precedence('*') > | * | A B

 precedence('+'), | + |

 push * onto stack. ---

 C Insert C in Postfix. | * | A B C

 | + |

 / Precedence('/') = | + | A B C *

 Precedence('*'), ---

 pop stack,

 insert * in Postfix.

 / Precedence('/') > | / | A B C *

 Precedence('+'), | + |

 push / onto stack. ---

 D Insert D in Postfix. | / | A B C * D

 | + |

 @ Precedence('@') < | + | A B C * D /

 Precedence('/'), ---

 pop stack,

 insert / in Postfix.

 @ Precedence('@') < | | A B C * D / +

 Precedence('+'), ---

 pop stack,

 insert + in Postfix.

 @ push @ onto stack, | @ | A B C * D / +

 exit DoOperator. ---

__

Coding Function DoOperator

Function DoOperator is shown in Fig. 6.20. DoOperator calls function Precedence to determine the precedence of an operator (2 for *, /; 1 for +, -; 0 for @). It also uses local variable TokenStacked to determine whether the new operator in Token has been pushed onto the stack.

Figure 6.20 Procedure DoOperator with Function Precedence

__

int Precedence(char Op)

//Returns precedence value of arithmetic operator Op.

{

 const char Sentinel='@';

 int Result;

 switch(Op)

 {

 case '*' : Result = 2;

 break;

 case '/' : Result = 2;

 break;

 case '-' : Result = 1;

 break;

 case '+' : Result = 1;

 break;

 case Sentinel : Result = 0;

 break;

 default : Result = -1;

 }

 return Result;

}

void DoOperator (char Token, Stack &OpStack, char Postfix[])

//

//Pre : Token and OpStack are defined.

//Post: If Precedence(Token) > Precedence(top of OpStack) then

// Token is pushed onto OpStack and PostFix is unchanged;

// otherwise operator is popped of OpStack and concatenated

// onto the end of string Postfix.

{

 char OldOp; //old operator on top of stack

 int TokenStacked; //new operator stacked flag

 int Success; //stack operator flag

 char *Empty = " "; //blank string

 char *To; //used to facilitate concatenation

 do

 {

 if (OpStack.IsEmpty())

 {

 OpStack.Push(Token, Success);

 TokenStacked = True;

 } //stack is empty

 else

 {

 OpStack.Retrieve(OldOp, Success);

 if (Precedence(Token) > Precedence(OldOp))

 {

OpStack.Push(Token, Success);

TokenStacked = True;

 } //push token

 else

 {

OpStack.Pop(OldOp, Success);

To = &OldOp;

strncat(Postfix, Empty, 1);

strncat(Postfix, To, 1);

TokenStacked = False;

 } //pop OpStack

 } //stack not empty

 }

 while(!TokenStacked);

}

__

Testing Procedure InfixToPost

Fig. 5.21 shows a driver program that tests functions InfixToPost and DoOperator. The program begins with

 #include <iostream.h>

 #include <string.h>

 #include <stdio.h>

 #include "stack.h"

Make sure that StackElement is defined as type char before compiling stack.cpp to disk. Use enough test expressions to satisfy yourself that the conversion is correct for properly formed input expressions. For example, try infix expressions where the + operator appears before and after the * operator. You also try infix expressions where all operators have the same precedence.

 If the value returned by procedure InfixToPost through ValidInfix is True, the driver program displays the postfix expression; otherwise, it displays an error message. Unfortunately function InfixToPost does not detect all possible errors. For example, the function does not detect a pair of adjacent operands or operators.

Figure 5.21 Testing Infix to Postfix Conversion

__

#include <iostream.h>

#include <string.h>

#include <stdio.h>

#include "stack.h"

//insert functions Precedence, DoOperator, GetToken, and //InfixToPostFix here

void main()

//Program tests infix to postfix conversion functions.

{

 const char Sentinel = '@';

 char Infix[MaxStack]; //infix expression

 char Postfix[MaxStack];

 int ValidInfix;

 char St[] = "";

 do

 {

 strcpy(Infix, St);

 strcpy(Postfix, St);

 cout << "Enter infix string ending with '@' > ";

 cin.getline(Infix, MaxStack, '\n'); //read input string

 if (Infix[0] != Sentinel)

 {

 InfixToPostfix(Infix, Postfix, ValidInfix);

 if (ValidInfix)

cout << "Postfix is " << Postfix;

 else

cout << "Improperly formed infix expression.";

 cout << "\n";

 }

 }

 while (Infix[0] != Sentinel);

}

__

Handling Parentheses

The ability to handle parentheses would be an important (and necessary) addition to the conversion functions. Parentheses are used to separate an expression into subexpressions. We can think of a opening parenthesis on an operator stack as a boundary or fence between operators. Whenever we encounter an opening parenthesis we want to push it onto the stack. We can think of a closing parenthesis as the terminator symbol for a subexpression. Whenever we encounter a closing parenthesis we want to pop all operators on the stack down to the matching opening parenthesis. Neither opening nor closing parentheses should appear in the postfix expression.

 To accomplish these objectives, we should modify procedure DoOperator in the following way. DoOperator should push each opening parenthesis onto the stack as soon as it is encountered. Since operators following the opening parenthesis should be evaluated before the opening parenthesis, the precedence of the opening parenthesis must be smaller than any other operator. When a closing parenthesis is encountered, we want to pop all operators up to and including the matching closing parenthesis, inserting all operators popped (except for the opening parenthesis) in the postfix string. Consequently, the precedence of the closing parenthesis must also be smaller than any other operator except for the opening parenthesis. A closing parenthesis is considered processed when an opening parenthesis is popped from the stack, and the closing parenthesis is not placed on the stack.

 In Fig. 6.22, functions DoOperator and Precedence are modified to handle parenthesized infix expressions. Both opening and closing parentheses are assigned a precedence of -1. The modified sections of code are shown in color. We must also change the set of operators shown in procedure InfixToPost to include parentheses.

Figure 6.22 Functions Precedence and DoOperator Modified to

 Handle Parentheses

__

int Precedence(char Op)

//Returns precedence value of arithmetic operator Op.

{

 const char Sentinel='@';

 int Result;

 switch(Op)

 {

 case '*' : Result = 2;

 break;

 case '/' : Result = 2;

 break;

 case '-' : Result = 1;

 break;

 case '+' : Result = 1;

 break;

 case Sentinel : Result = 0;

 break;

 case '(' : Result = -1;

 break;

 case ')' : Result = -1;

 break;

 default : Result = -2;

 }

 return Result;

}

void DoOperator (char Token, Stack &OpStack, char Postfix[])

//

//Pre : Token and OpStack are defined.

//Post: If Precedence(Token) > Precedence(top of OpStack) then

// Token is pushed onto OpStack and PostFix is unchanged;

// otherwise operator is popped of OpStack and concatenated

// onto the end of string Postfix.

{

 char OldOp; //old operator on top of stack

 int TokenStacked; //new operator stacked flag

 int Success; //stack operator flag

 char *Empty = " "; //blank string

 char *To; //used to facilitate concatenation

 do

 {

 if (OpStack.IsEmpty() || (Token == '('))

 {

 OpStack.Push(Token, Success);

 TokenStacked = True;

 } //stack is empty

 else

 {

 OpStack.Retrieve(OldOp, Success);

 if (Precedence(Token) > Precedence(OldOp))

 {

 OpStack.Push(Token, Success);

 TokenStacked = True;

 } //push token

 else

 {

 OpStack.Pop(OldOp, Success);

 if (OldOp == '(')

 TokenStacked = True; //parentheses processed

 else

 {

 To = &OldOp;

 strncat(Postfix, Empty, 1);

 strncat(Postfix, To, 1);

 TokenStacked = False;

 }

 } //pop OpStack

 } //stack not empty

 }

 while(!TokenStacked);

}

__

Testing the Conversion of Infix Expressions with Parentheses

Fig. 6.23 shows a sample run of the driver program using the modified procedure DoOperator. Note that the driver program displays an error message if there are missing or extra parentheses.

Figure 6.23 Sample Run of TestInToPost with Modified Precedence

 and Modified DoOperator

__

Enter infix string ending with '@' > (A + B) * C / (D + E) @

Postfix is A B + C * D E + /

Enter infix string ending with '@' > A + B * C / D @

Postfix is A B C * D / +

Enter infix string ending with '@' > A * B + C @

Postfix is A B * C +

Enter infix string ending with '@' > A + B + C @

Postfix is A B + C +

Enter infix string ending with '@' > ((A + B) @

Improperly formed infix expression.

Enter infix string ending with '@' > (A + B * C @

Improperly formed infix expression.

Enter infix string ending with '@' > @

__

Using Stacks in Recursion

One of the most important applications of stacks in computer science is the use of a run-time stack to facilitate the implementation of procedure calls and recursion in a block structured language. The run-time stack contains one activation record for each procedure that is currently executing. With each procedure call, a new activation record is pushed onto the run-time stack. With each procedure return, an activation record is popped off of the run-time stack. At any instant, the activation record for the currently executing procedure will be on the top of the run-time stack.

 Fig. 6.24 shows a run-time stack for a program P which has called a procedure Q. Q, in turn, has called procedure R which has called itself recursively. There are four activation records on the run-time stack. The activation record for the second call to R is the active record.

Figure 6.24 Run-time Stack with Four Activation Records

__

 Run-time stack

 ÕÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¸

 ³Parameters for ³

 ³2nd call to R ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Local variables³

 ³for second call³

 ³to R ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Return address ³

 ³in procedure R ³

 ÆÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍµ

 ³Parameters for ³

 ³1st call to R ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Local variables³

 ³for first call ³

 ³to R ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Return address ³

 ³in procedure Q ³

 ÆÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍµ

 ³Parameters for ³

 ³1st call to Q ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Local variables³

 ³for first call ³

 ³to Q ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Return address ³

 ³in program P ³

 ÆÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍµ

 ³Parameters for ³

 ³program P ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Variables ³

 ³for program P ³

 ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

 ³Return address ³

 ³in system ³

 ÔÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ¾

 Fig. 6.24 shows that there are two activation records for procedure R. Each activation record may contain different values for the procedure's parameters, local variables, and the return address. The return address for the active record is the point of the recursive call in procedure R; whereas the return address in the activation record for the first call to R is the point in Q where that call occurred. When we return from the second recursive call, its activation record will be popped from the stack and the new active record will be the activation record for the first call to R. However, if another recursive call to R occurs before the return, a third activation record for procedure R will appear on the run-time stack. The return address for the call to program P (the bottom activation record) is an address in the operating system.

Using Stacks to Eliminate Recursion

Now that we understand what happens to the run-time stack when a recursive call occurs, we can implement recursive behavior by manipulating our own parameter stack. Our parameter stack will be a stack of records where each record contains storage for the procedure's value parameters and any local variables. We will show how to do this for a special case of recursion called tail recursion. This technique can be adapted for general recursive procedures; however, we will leave this exercise as a programming assignment (see Project 6).

 A tail-recursive procedure is a recursive procedure in which the last statement executed in the statement body is a recursive call to itself. The body of a tail-recursive procedure has the general form

 if stopping condition then

 perform stopping step

 else

 begin

 do something before recursive call

 perform recursive call

 end

To repeat, there is only one recursive call and it occurs at the end of the procedure body. An example of a tail-recursive procedure is function PrintBack, first presented in Fig. 5.11 and repeated in Fig. 6.25 below. PrintBack prints an array in normal order. The first parameter, X, is an array type, and the second parameter, N, is an integer which represents the subscript of the element being printed.

Figure 6.25 Function PrintBack

__

#include <iostream.h>

void PrintBack(int X[],int N)

//Prints an array of integers (X) with subscripts 0 to N.

//Pre : Array X and N are defined and N >= 0.

//Post: Displays X[N], X[N - 1], ... , X[1]. X[0].

{

 if (N == 0)

 cout << X[0] << "\n"; //stopping case

 else

 {

 cout << X[N] << "\n";

 PrintBack(X, N - 1); //recursive step

 }

}

__

 To remove recursion, we will begin by creating a parameter stack and pushing the initial values of the procedure parameters onto the stack. Since we are implementing recursion using iteration (looping), the main control structure will be a loop that repeats until the parameter stack becomes empty. The first step in the loop body will be to pop the parameter values from the stack. Next, we will execute an if statement based on the if statement in the original recursive procedure. The recursive call will be replaced by a statement that pushes the parameters for the recursive call onto the parameter stack. Each time we repeat the loop, we will pop the top record from the parameter stack to retrieve the active values for the procedure parameters. The iterative form of a tail-recursive procedure follows:

 create an empty parameter stack

 push the initial parameter values on the parameter stack

 repeat

 pop stack to retrieve parameter values

 if stopping condition then

 perform stopping step

 else

 begin

 do something before recursion

 push new parameter values onto stack

 end {else clause}

 until the parameter stack is empty

 Fig. 6.26 shows an iterative version of function PrintBack

after recursion removal. In simulating recursion we only need to push value parameters on the parameter stack to save their values between simulated recursive procedure activations. In function PrintBack, only the value parameter N must be placed on the parameter stack (a stack of integers). Note that the initial value of N is pushed onto this stack when the procedure is first called; the "recursive step" pushes subsequent values of N onto the stack.

Figure 6.26 Function PrintBack with Recursion Removed

__

#include <iostream.h>

#include "stack.h"

void PrintBack(int X[], int N)

//Prints an array of integers with subscripts 0..N.

//Pre : Array X is defined and N >= 0.

//Post: Displays X[N], X[N - 1], ... , X[1], X[0].

{

 Stack ParamStack; //stack of integer values

 int Success; //operator flag

 ParamStack.Push(N, Success);

 do

 {

 ParamStack.Pop(N, Success);

 if(N == 0)

 cout << X[0] << "\n";

 else

 {

 cout << X[N] << "\n";

 ParamStack.Push(N - 1, Success);

 }

 }

 while (!ParamStack.IsEmpty());

}

__

Exercises for Section 6.5

Self-check

1. Does the order of operands change when an infix expression is

 translated to a postfix expression?

2. Which stack method is used to simulate the call to a recursive

 function and which stack method is used to simulate the exit

 from a recursive routine?

Programming

1. Modify functions DoOperator and Precedence (Fig. 5.22) to

 allow the use of ^ as an exponentiation operator. This

 operator should have the highest precedence value.

2. Write a program to test the non-recursive version of function

 PrintBack shown in Fig. 6.26.

6.7 Common Programming Errors

 In this chapter, we used an array data field to store the contents of a stack. Consequently, most stack methods manipulate an array subscript. The errors you are most likely to encounter in working with this stack implementation are many of the same errors you would encounter in any array programming applications. The most common error when working with arrays is an out-of-range-subscript error. The default behavior for most C++ compilers is to ignore subscript range errors, which means that you may accidently access or even modify storage locations outside the array without your knowledge. You can reduce the likelihood of a subscript range error by being certain that client programs for your stack library do not attempt to manipulate the stack array subscript directly. This is best accomplished by making the stack array field private, so that it may only be access using previously tested stack methods.

 You also need to be certain that there are no type inconsistencies. The client programs in this chapter all made use of a header file stack.h which was also used by the stack implementation file stack.cpp. It is important to be certain that the stack implementation file and the client program are compiled using the same version of stack.h. It is important to remember to change the type declarations in the header file stack.h any time you write a client program which requires a different stack element type. The stack instances in our case studies had stack elements which were built-in types (eg. char or int) so we did not need to import a class for StackElement into our Stack client programs. When your stack element is a user defined class you may need to explicitly import the definitions from its header file (e.g. #include "stackelement.h") into your client program as well. The general rule to follow is that a client program must have access to the header files containing definitions for any identifiers referenced in the program code.

6.8 Chapter Review

 In this chapter we introduced the stack as an abstract data type. Stacks are used to implement recursion and expression translation. A stack is a last-in, first-out data structure. This means that the last item added to a stack is the first on removed.

 In this chapter, we described an array-based implementation of a stack object. We showed how stacks may be used to check to balances parentheses, to evaluate arithmetic expressions, to translate infix expressions to postfix, and to remove recursion. In Chapter 8 we will discuss a stack implementation which makes more efficient use of computer memory.

Quick-Check Exercises

1. A stack is a _____-in, _____-out data structure.

2. Draw the array representation of the following stack.

 | $ |

 | * |

 | & |

3. What is the value of S.Items[0] for the stack shown in

 question 2?

4. What is the value of S.Top for the stack shown in question 2?

5. Why should the statement S.Top = S.Top - 1; not appear in a

 client program of our Stack class library?

6. Write a program segment which uses the stack methods that

 removes the element just below the top of the stack.

7. Write a method PopNextTop for a Stack class descendant called

 NewStack which removes the element just below the top of the

 stack.

8. Can method PopNext be written without using methods Stack::Pop

 and Stack::Push?

Answers to Quick-Check Exercises

1. last, first

2. ÚÄÄÄ¿

 S.Top ³ 2 ³

 ÃÄÂÄÅÄ¿

 S.Items ³&³*³$³

 ÀÄÁÄÁÄÙ

3. &

4. 3

5. The client program should not be aware of the internal

 representation of the stack. Also, S.Top is private and the

 C++ compiler will not allow use to reference this field

 outside file stack.cpp.

6. S.Pop(X, Success);

 S.Pop(Y, Success);

 S.Push (X, Success);

7. #include "stack.h"

 // convert this to C++

 NewStack = object(Stack)

 procedure PopNextTop

 (var X {output} : StackElement;

 var Success {output} ; Boolean);

 end; {NewStack}

 procedure NewStack.PopNextTop

 (var X {output} : StackElement;

 var Success {output} : Boolean);

 begin {PopNextTop}

 Pop (X, Success);

 Pop (Y, Success);

 Push (X, Success)

 end; {PopNextTop}

8. No, because the data fields for Stack instances are private

 and are not accessible to any methods not declared in file

 stack.cpp. //check protected status of data members

Review Questions

1. Show the effect of each of the following operations on stack

 S. Assume that Y (type char) contains the character '&'.

 What are the final values of X and Success (type int) and

 the contents of stack S?

 Stack S;

 S.Push('+', Success);

 S.Pop(X, Success);

 S.Pop(X, Success);

 S.Push('(', Success);

 S.Push(Y, Success);

 S.Pop (X, Success);

2. Assuming that stack S is implemented using our Stack class,

 answer question 1 by showing the values of data member Top and

 array data field Items after each operation.

3. Write a new Stack method called PopTwo that removes the top

 two stack elements and returns them as method output

 parameters. Use method Stack::Pop.

4. Answer question 3 without using method Stack::Pop.

5. Write a procedure which uses Stack methods make an exact

 copy of a stack.

Programming Projects

1. Write a client program which uses our stack abstract data type

 to simulate a typical session with a bank teller. Unlike most

 banks this one has decided that the last customer to arrive

 will always be the first to be served. Change StackElement to

 allow it to represent information about a bank customer. For

 each customer you need to store a name, transaction type, and

 the amount of the transaction. After every five customers are

 processed, display the size of the stack an the names of the

 customers who are waiting.

2. Write a program to handle the flow of an item into and out of

 a warehouse. The warehouse will have numerous deliveries and

 shipments for this item (a widget) during the time period

 covered. A shipment out is billed at a profit of 50 percent

 over the cost of a widget. Unfortunately, each shipment

 received may have a different cost associated with it. The

 accountants for the firm have instituted a last-in, first-out

 system for filling orders. This means that the newest widgets

 are the first ones sent out to fill an order. This method of

 inventory can be represented using a stack. The when a

 shipment is received an element is pushed onto the stack.

 When a shipment is sent out one or more records are popped

 from the stack. Each data record will consist of

 S or O: shipment received or order to be sent

 #: quantity shipped out

 Cost: cost per widget (for shipment received)

 Vendor: character string - name of company sent to or

 received from

 Write the necessary procedures to store the shipments

 received and to process orders. The output for an order will

 consist of the quantity and the total cost for all widgets in

 the order. Hint: Each widget is 50 percent higher than its

 cost. The widgets used to fill an order may come from

 multiple shipments with different costs.

3. Write a program which determines whether it is possible to

 travel between two cities entered by the program user, based

 on the air line routing information stored in a table. Each

 entry of the table contains the name of the city where a

 flight originated and the name of the city which is its

 destination. If a direct connection exists between the user's

 two cities a simple search of the routing table would be

 sufficient. If a direct connection is not in the table, then

 the program would need to search for a series of shorter

 flights which could be combined to travel between the user's

 two cities.

 It is possible that we might choose a set of flights

 which lead to a deadend. If this happens you we need to

 backtrack and try to find an alternate set of flights. A

 stack can be used to keep track of the order in which we

 visited each city. Backtracking is then accomplished by

 popping elements off the top of the stack.

 You will want to keep track of which cities are currently

 on the stack at any given time so that you don't have the same

 city on the stack more than once. You may want to have table

 containing the name of each city and a field indicating

 whether the city is visited (is already on the stack) or has

 not been visited yet (is not on the stack right now).

4. Redo our maze case study from Chapter 5 without using

 recursion. Have your program push the coordinates of the

 current maze position on stack. When backtracking needs to

 take simply pop coordinates off the stack until you find a

 place which allows you to move forward again.

5. Write a client program which uses our Stack class to compile

 a simple arithmetic expression without parentheses. For

 example, the expression

 A + B + C - D

 should be compiled as the table

 Operator Operand1 Operand2 Result

 __

 * B C Z

 + A Z Y

 - Y D X

 The table shows the order in which the operations are

 performed, (*, +, -) and operands for each operator. The

 result column gives the name of an identifier (working

 backward from Z) chosen to hold each result. Assume the

 operands are the letters A through F and the operators are

 (+, -, *, /).

 Your program should read each character and process it as

 follows. If the character is blank, ignore it. If it is an

 operand, push it onto the operand stack. If the character is

 not an operator, display an error message and terminate the

 program. If it is an operator, compare its precedence to that

 of the operator on top[of the operator stack. If the new

 operator has than the one currently on top of the stack (or

 stack is empty), it should be pushed onto the operator stack.

 If the new operator has the same or lower precedence, the

 operator on top of the operator stack must be evaluated next.

 This is done by popping it off the operator stack along with

 a pair of operands from the operand stack and writing a new

 line in the output table, The character selected to hold the

 result should then be pushed onto the operand stack. Next,

 the new operator should be compared to the new top of the

 operator stack. Continue to generate output lines until the

 top of the operator stack has lower precedence than the new

 operator or until it is empty. At this point, push the new

 operator onto the top of the stack and examine the next

 character in the data string. When the end of the string is

 reached, pop any remaining operator along with its operand

 pair just described. Remember to push the result character

 onto the operand stack after each table line is generated.

6. Make use of a parameter stack and write an iterative version

 of the Towers of Hanoi case study that we discussed in

 Chapter 5. Remember that procedure Tower contains two

 recursive calls and each will need to be simulated in your

 iterative procedure.

