CHAPTER 4  Object Inheritance and Reuse

4.1  Unions

       Case Study:  An Abstract Data Type for Figures  

4.2  Object Inheritance

4.3  Constructors and Virtual Methods

4.4  Templates

4.5  Type Conversion

     Chapter Review

In this chapter we examine features of C++ which make it possible to construct highly reusable software components.  We compare the 

use of unions and inheritance as a means of implementing a family of related objects.  Inheritance is an effective means of adapting previously defined classes to meet the needs of new programming applications.  Inheritance of class methods and data members allows us to write more reliable software by letting us reuse pieces of previously tested objects in the definition of new objects.  Inheritance also promotes information hiding, since a programmer only needs to understand the behavior of an object and its interface to reuse it in the definition of a new object.

     In this chapter we also discuss several other important C++ language features (constructors, templates, and typecasting) which make software components easier to reuse in client programs.  Constructors make the task of object initialization easier.  Templates might best be described as parametrized classes which may be instantiated for several different data types within the same client program.  Typecasting is quite literally the process of treating a variable of one data type as if it were some other type.

4.1  Unions

Sometimes we would like to declare structs that have several fields that are the same but also have some fields that are different.  An example is a struct which could be used to store a geometric figure.  For all figures, we would want to store the name of the figure as a string (e.g., 'Circle'), its perimeter, and its area.  Then for a circle, we would store its radius; for a square, its side length; for a rectangle, its width and length; for a triangle, its base and height, and so on.  We can make use of a union type in the struct FigureType below to do this.

    const Size = 9;

    enum FigKind {Circle, Rectangle, Square, Triangle};

    struct RectangleType

    {

      float Width, Length;

    };

    struct TriangleType

    {

      float Base, Height;

    };

    struct FigureType

    {

      char Name[Size];

      float Area;

      float Perimeter;

      FigKind Shape;

      union

      {

        float Radius;         //circle

        RectangleType Rec;    //rectangle

        float Side;           //square

        TriangleType Tri;     //triangle

      };

    };

    struct FigureType OneFig;


Struct FigureType above actually has four fixed data fields: Name, Area, Perimeter, Shape.  Shape is used as a union tag member for the anonymous union which follows.  The fields defined inside the union are all assigned to a single storage location.  This allows us to conserve computer memory when only one union variant is active at any given point in time.  When a union is defined inside a struct, its members may be accessed as if they are fields within the struct.  For any struct variable, the value of the union tag member tells us which of the union variants is defined.  In our example we define four union variants, one for each value of the enumerated type FigKind.  We could list more than four fields in our union or fewer, but we would have no way of checking which fields are currently defined.  It is the programmer's responsibility to check the value of the union tag member before attempting to access one of its data members.

For example, data member Radius (type float) is associated with a struct whose Shape field has the value Circle.


Figure 4.1 shows a sketch of struct variable MyFigure.  The compiler always allocates the maximum storage space that might be needed for a union variant.  As shown in the figure, there is unused space when the struct variable contains the attributes for a circle or square.

Figure 3.12  Instances of struct Variable MyFigure
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The assignment statements below store data in struct variable MyFigure using the circle union variant.
 M_Pi is a constant defined in math.h whose value approximates pi.

     MyFigure.Shape = Circle;


MyFigure.Name = 'Circle';


MyFigure.Radius = 1.0;


MyFigure.Area = M_Pi * MyFigure.Radius * MyFigure.Radius;


MyFigure.Perimeter = 2 * M_Pi * MyFigure.Radius;

Often we define the union tag member first and then use a switch statement to store values in the remaining fields of a record with variants.  Based on the value stored in the union tag member, the switch statement below stores an appropriate string in the Name field of record MyFigure.


switch(MyFigure.Shape)

     {


  case Circle:  

         strcpy(MyFigure.Name, "Circle");

         break;


  case Rectangle:

         strcpy(MyFigure.Name, "Rectangle");

         break;

       case Square:

         strcpy(MyFigure.Name, "Square");

         break;


  case Triangle:

         strcpy(MyFigure.Name, "Triangle");

         break;

     }


You must be careful to reference only the fields that are defined for a particular union variant.  For example, if the union tag member value is Circle, it makes no sense to reference fields Side, Base, or Width.  C++ cannot detect this kind of error.

Case Study

An Abstract Data Type for Figures

Let's say we wanted to write an abstract data type that enabled us to manipulate a variety of geometric figures.  One way to do this would be to create a class library whose header file contained the declaration for class Figure whose data member is of type FigureType.  The library implementation file would contain the complete method declarations.  Figure 4.2 shows the header file for our Figure class library.

Figure 4.2  Header File for Figure Class Library

________________________________________________________​________

#include <fstream.h>

#include <string.h>

#include <math.h>

//Header file for class Figure

const Size = 9;

enum FigKind {Circle, Rectangle, Square, Triangle};

struct RectangleType

{

  float Width, Length;

};

struct TriangleType

{

  float Base, Height;

};

class Figure

{

  struct FigureType

  {

    char Name[Size];

    float Area;

    float Perimeter;

    FigKind Shape;

    union

    {

      float Radius;         //circle

      RectangleType Rec;    //rectangle

      float Side;           //square

      TriangleType Tri;     //triangle

    };

  };

  struct FigureType OneFig;

public:

  void Create();

  void Init(FigKind ShapeVal,  //input - shape

            float Val1,        //input - first dimension


       float Val2);       //input - second dimension

  void ComputePerim();

  void ComputeArea();

  char *GetName();

  float GetArea();

  float GetPerim();

  float GetFirstVar();

  float GetSecondVar();

  void Display();

};

________________________________________________________________


Figure 4.2 shows the implementation file for our class Figure.  Method Create sets the Name field of a new figure to the blank string using the string.h function strset.  Method Init stores ShapeVal into the union tag member, defines the Name field, and stores either Val1 or both Val1 and Val2 into the appropriate union data member.

Figure 4.3  Implementation File for Class Figure

_________________________________________________________________

#include "figure.h"

//Abstract data type Figure with methods for initializing and

//displaying the characteristics of Figure instances.

void Figure::Create()

//Creates figure with blank string as value of Name field.

{

  strset(OneFig.Name, ' ');

}

void Figure::Init(FigKind ShapeVal, float Val1, float Val2)

//

//Pre : Figure has been created.

//Post: Object is defined with union tag member FigKind set

//      to ShapeVal. If object has one data member, Val1 is

//      stored in it and Val2 is ignored; otherwise Val1 and

//      Val2 are stored.

{

  OneFig.Shape = ShapeVal;

  switch (OneFig.Shape)

  {

    case Circle:

      strcpy(OneFig.Name, "Circle");

      OneFig.Radius = Val1;

      break;

    case Rectangle:

      strcpy(OneFig.Name, "Rectangle");

      OneFig.Rec.Width = Val1;

      OneFig.Rec.Length = Val2;

      break;

    case Square:

      strcpy(OneFig.Name, "Square");

      OneFig.Side = Val1;

      break;

    case Triangle:

      strcpy(OneFig.Name, "Triangle");

      OneFig.Tri.Base = Val1;

      OneFig.Tri.Height = Val2;

      break;

  }

}

void Figure::ComputePerim()

//Defines the value of object data member Perimeter.

//Pre : Union tag member is defined and characteristics of

//
object are defined.

//Post: Assigns value to Perimeter data member.

{

  switch(OneFig.Shape)

  {

    case Circle:

      OneFig.Perimeter = 2 * M_PI * OneFig.Radius;

      break;

    case Rectangle:

      OneFig.Perimeter =


     2 * (OneFig.Rec.Width + OneFig.Rec.Length);

      break;

    case Square:

      OneFig.Perimeter = 4 * OneFig.Side;

      break;

    case Triangle:

      OneFig.Perimeter =


     //pow() to raise to a power


     OneFig.Tri.Base + OneFig.Tri.Height +


     sqrt(pow(OneFig.Tri.Base, 2.0) +



  pow(OneFig.Tri.Height, 2.0));

      break;

  }

}

void Figure::ComputeArea()

//Defines the value of object data member Area.

//Pre : Union tag member is defined and characteristics of

//
object are defined.

//Post: Assigns value to Area data member.

{

  switch(OneFig.Shape)

  {

    case Circle:

      OneFig.Area = M_PI * pow(OneFig.Radius, 2.0);

      break;

    case Rectangle:

      OneFig.Area = OneFig.Rec.Width * OneFig.Rec.Length;

      break;

    case Square:

      OneFig.Area = pow(OneFig.Side, 2.0);

      break;

    case Triangle:

      OneFig.Area = 0.5 * OneFig.Tri.Base * OneFig.Tri.Height;

      break;

  }

}

char *Figure::GetName()

//Returns value of date member Name.

{

  char* Name = new char[Size + 1];

  strcpy(Name, OneFig.Name);

  return(Name);

}

float Figure::GetArea()

//Returns value of data member Area.

{

  return(OneFig.Area);

}

float Figure::GetPerim()

//Returns value of data member Perimeter.

{

  return(OneFig.Perimeter);

}

float Figure::GetFirstVar()

//Retrieves the value of first object dimension.

{

  float X;

  switch(OneFig.Shape)

  {

    case Circle:

      X = OneFig.Radius;

      break;

    case Rectangle:

      X = OneFig.Rec.Length;

      break;

    case Square:

      X = OneFig.Side;

      break;

    case Triangle:

      X = OneFig.Tri.Base;

      break;

  }

  return(X);

}

float Figure::GetSecondVar()

//Returns value of second dimension, if defined;

//otherwise returns 0.

{

  float X;

  switch(OneFig.Shape)

  {

    case Circle:

      X = 0;

      break;

    case Rectangle:

      X = OneFig.Rec.Length;

      break;

    case Square:

      X = 0;

      break;

    case Triangle:

      X = OneFig.Tri.Base;

      break;

  }

  return(X);

}

void Figure::Display()

//Displays object data members.

//Pre : All required data members are defined.

//Post: Each data member has been displayed.

{

  int Equal;

  //check for blank string as Name value

  Equal = strncmp(OneFig.Name, " ", 1);

  if (!Equal)

   cout << "Figure kind is not defined\n";

  else

  {

    cout << "Figure kind is " << OneFig.Name << "\n";

    cout << "Area is " << OneFig.Area << "\n";

    cout << "Perimeter is " << OneFig.Perimeter << "\n";

    switch(OneFig.Shape)

    {

      case Circle:


cout << "Radius is " << OneFig.Radius <<"\n";


break;

      case Rectangle:


cout << "Width is " << OneFig.Rec.Width << "\n";


cout << "Length is " << OneFig.Rec.Length << "\n";


break;

      case Square:


cout << "Side is " << OneFig.Side << "\n";


break;

      case Triangle:


cout << "Base is " << OneFig.Tri.Base << "\n";


cout << "Height is " << OneFig.Tri.Height << "\n";

    }

  }

}

_________________________________________________________________


The accessor methods GetName, GetArea, and so on, are all pretty straightforward.  Accessor function GetSecondVar returns the value stored in the second variant field.  As shown, its value is not defined when the figure is a circle or square.  Method Display displays the values of all data members of an instance of class Figure.  A switch statement is used to display the union members of OneFig.

Using Figure Class Library


Figure 4.4 provides a simple client program that uses our  Figure class library.  The program creates class instances for a rectangle and a square, stores data in both records, computes the area and perimeter for each figure, and displays the figure's characteristics.

Figure 4.4  Client Program for Figure class with Sample Run

________________________________________________________________

#include "figure.h"

//Program to test Figure class

void main()

{

  Figure MySquare, MyRectangle;

  MyRectangle.Create();

  MyRectangle.Init(Rectangle, 5.0, 10.0);

  MyRectangle.ComputePerim();

  MyRectangle.ComputeArea();

  MyRectangle.Display();

  cout << "\n";

  MySquare.Create();

  MySquare.Init(Square, 7.0, 0.0);

  MySquare.ComputePerim();

  MySquare.ComputeArea();

  MySquare.Display();

  cout << "\n";

}

Figure kind is Rectangle

Area is 50

Perimeter is 30

Width is 5

Length is 10

Figure kind is Square

Area is 49

Perimeter is 28

Side is 7

________________________________________________________________


The availability of union variants allows us to store a variety of different shapes of figures using just one class instance variable.  However, this approach has some serious limitations.  Let's say we wanted to add another geometric figure, say Rhombus, to our collection of simple figures.  First, we would have to add another union variant to struct FigureType.  Next, we would have to change every method, adding an extra alternative to each switch statement to handle rhombuses.  In general, it is better not to modify methods that have already been implemented, tested, and in use.  In the next section, we will see an alternative approach which has none of these limitations.

Exercises for Section 4.1

Self-Check

1. What is the reason for including a union tag data member when

   declaring a union type inside a struct?

Programming

1. Write a client program for our Figure class library which

   prompts the user to enter information for 10 figures and    stores this information in an array of figures.

2. Write a procedure which uses the character * to draw a picture

   on the computer screen for rectangle or square variants of

   Figure instance variables. Assume one * is used for each unit

   of length or width.

4.2  Object Inheritance

Another way to look at the collection of figures that we have been discussing is that they are all specializations of a general figure.  A general figure has properties such as name, area, and perimeter.  But then each of these objects has its own special properties depending on whether it is a circle, rectangle, and so on.  


Object oriented programming allows us to implement this representation of our collection of figures using a property called inheritance.  Each figure type can be considered a descendant of a general figure object type (the ancestor).  Just as children inherit certain characteristics from their parents, a descendant type (derived class or subclass) can inherit properties of its ancestor type (base class or superclass).  A derived class will inherit all the data members of its ancestor classes and may have additional data members of its own.  A descendant type will also inherit all the method members of its ancestor, but it may redefine these methods.  A derived class may also have its own additional method members.  

     Derived class method members do not have access to any of the private members of the base class.  To make data members accessible to derived class methods they need to be declared as public or protected.  Protected data members are only accessible to classes derived from the class in which they are defined.


Figure 4.5 is a sketch of a class hierarchy for a general figure object and its derived classes.  Rather than represent a square as a direct descendant of Figure, we have shown Square as a descendant of Rectangle (a rectangle whose length and width are the same).

Figure 4.5  Class Hierarchy for Geometric Figures

________________________________________________________________
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Figure 4.6 is a more detailed description of this object hierarchy.  It shows each object along with its method and data members.  As shown, the base class Figure has three data members: Name, Area, and Perimeter.  All other objects inherit these three data members and add data members of their own (e.g., Length and Width for Rectangle).  The object Square does not have any data members of its own since a square is a rectangle whose length and width are equal.  Each class including the base class Figure has its own Init and Display method members.  Each object, except for the base class Figure and the derived class Square, has its own method for computing area and perimeter.  Instances of class Square inherit these methods from class Rectangle.

Figure 4.6  Object Hierarchy with Method and Data Members

_________________________________________________________________
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Figure 4.7 shows a more complete specification of the Rectangle class.  In Figure 4.7, the data and method members that are inherited are shown in italics.

Figure 4.7  Class Rectangle with Inherited Members in Italics
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Figure 4.8 shows the header file figfamil.h.  For brevity, we have just shown three class definitions: Figure, Rectangle, and Square.  The declaration for each derived class includes its superclass following the reserved word public (e.g., Rectangle :public Figure;  Square :public Rectangle). 

Figure 4.8  Header file figfamil.h

_________________________________________________________________

#include <fstream.h>

#include <string.h>

#include <math.h>

//Header file for Figure class hierarchy

const Size = 9;

//Base class declaration

class Figure

{

 protected:

   char Name[Size];

   float Area;

   float Perimeter;

 public:

   void Init();

   void Display();

   char *GetName();

   float GetArea();

   float GetPerim();

};

//Derived class Rectangle declaration

class Rectangle :public Figure

{

 protected:

   float Width;

   float Length;

 public:

   void Init(float LengthVal,  //input - rectangle length


     float WidthVal);  //input - rectangle width

   void ComputePerim();

   void ComputeArea();

   void Display();

};

//Derived class Square declaration

class Square :public Rectangle

{

 public:

   void Init(float SideVal);  //input - square side length

   void Display();

};

_________________________________________________________________


The implementation file figfamil.cpp appears in Figure 4.9. There are a number of features of the implementation file that need explanation.  Both methods Rectangle::Display and Square::Display begin with a call to Figure::Display which displays the Name, Area, and Perimeter data members of a class instance if the Name field of that instance is defined.  Method Square::Init assigns the value of SideVal to its data members Length and Width, both of which are inherited from Rectangle.

Figure 4.9  Implementation File figfamil.cpp

_________________________________________________________________

#include "figfamil.h"

//Figure class methods

void Figure::Init()

//Initializes figure with blank Name fields.

{

  strset(Name, ' ');

  Area = 0.0;

  Perimeter = 0.0;

}

void Figure::Display()

//Displays attributes of Figure class instance.

//Pre : All data members are defined.

//Post: The value of each data member has been displayed.

{

  int Equal;

  //Check for blank string as Name value

  Equal = strncmp(Name," ", 1);

  if (!Equal)

    cout << "Figure kind is not defined\n";

  else

  {

    cout << "Figure kind is " << Name << "\n";

    cout << "Area is " << Area << "\n";

    cout << "Perimeter is " << Perimeter << "\n";

  }

}

char *Figure::GetName()

//Returns value of data member Name.

{

  char* FigName = new char[Size + 1];

  strcpy(FigName, Name);

  return(FigName);

}

float Figure::GetArea()

//Returns value data member Area.

{

  return(Area);

}

float Figure::GetPerim()

//Returns value of data member Perimeter.

{

  return(Perimeter);

}

//Rectangle class methods

void Rectangle::Init(float LengthVal, float WidthVal)

//Initializes Rectangle class instance.

//Pre : None.

//Post: Rectangle instance initialized, with data members Name,

//      Length, and Width defined.

{

  strcpy(Name, "Rectangle");

  Length = LengthVal;

  Width = WidthVal;

}

void Rectangle::ComputePerim()

//Computes Perimeter for Rectangle object.

//Pre : Object initialized.

//Post: Data member Perimeter defined.

{

  Perimeter = 2 * (Width + Length);

}

void Rectangle::ComputeArea ()

//Computes Area for Rectangle object.

//Pre : Object initialized.

//Post: Data member Area defined.

{

  Area = Length * Width;

}

void Rectangle::Display()

//Displays attributes of Rectangle class instance.

//Pre : All data members are defined.

//Post: The value of each data member has been displayed.

{

  Figure::Display();

  cout << "Width is "<< Width << "\n";

  cout << "Length is "<< Length << "\n";

}

//Square class methods

void Square::Init(float SideVal)

//Initializes Square class instance.

//Pre : None.

//Post: Square instance initialized, with data members Name,

//      Length, and Width defined.

{

  strcpy(Name, "Square");

  Width = SideVal;

  Length = SideVal;

}

void Square::Display()

//Displays attributes of Square class instance.

//Pre : All data members are defined.

//Post: The value of each data member has been displayed.

{

  Figure::Display();

  cout << "Side is " << Width << "\n";

}

_________________________________________________________________


Square does not have its own method to compute perimeter and area, so it inherits methods ComputePerim and ComputeArea from class Rectangle.  Because Width and Height are set to the same value when Square::Init executes, the values computed by these inherited methods will be correct. 


Accessor methods GetName, GetArea, and GetPerim are defined in class Figure and are inherited by all its subclasses.  Please note, that while we have not done so in Figure 4.9, good programming practice would suggest that fields Area and Perimeter be assigned some value to avoid a run-time error when calling accessor methods GetArea and GetPerimeter.  This could be accomplished by calling method Figure::Init as the first statement in both Rectangle::Init and Square::Init.  It might also be desirable to define additional accessor methods in the Rectangle and Square classes to allow access to additional fields not present in their base class Figure.

________________

Program Style

Advantages of Object Inheritance


There are several important advantages to using inheritance.  First of all, we have minimized the effort required to introduce a new geometric figure type as each new figure has the capability of inheriting data and method members from its ancestor.  For example, we were able to add object Square by providing only two new method members.  Secondly, if we want to add a new figure (say, Triangle or Circle), we could do this without modifying the classes and methods that have already been written.  Thirdly, we could place these new objects in a program module and import all ancestor classes and their methods by placing the statement


include "figfamil.h";

in the header file of the new class library module and linking the necessary object modules when compiling our new module.

________________

Using Figure Class Library

Figure 4.10 shows a client program that initializes instances Figure, Rectangle, and Square classes.  After the objects are initialized, the areas and perimeters of the rectangle and square are computed and their characteristics are displayed.

Figure 4.10  Client Program for Figure Classes with Sample Run

________________________________________________________________

#include "figfamil.h"

//Program tests Figure class hierarchy

void main()

{

  Figure MyFigure;

  Rectangle MyRectangle;

  Square MySquare;

  MyFigure.Init();                //initialize figure

  MyFigure.Display();             //display figure attributes

  cout << "\n";

  MyRectangle.Init (5.0, 10.0);   //create a 5 x 10 rectangle

  MyRectangle.ComputePerim();

  MyRectangle.ComputeArea();

  MyRectangle.Display();          //display rectangle attributes

  cout << "\n";

  MySquare.Init(7.0);             //create a square with side 7

  MySquare.ComputePerim();

  MySquare.ComputeArea();

  MySquare.Display();             //display square attributes

  cout << "\n";

}

Figure kind is not defined

Figure kind is Rectangle

Area is 50

Perimeter is 30

Width is 10

Length is 5

Figure kind is Square

Area is 49

Perimeter is 28

Side is 7

________________________________________________________________

Object and Assignment 

     The rules of assignment compatibility in C++ allow variables declared as instances of an class to be assigned values of another instance of the same class or any of its derived classes.  For example, if F1 is a variable of type Figure and R1 is of type Rectangle, the following is a valid assignment statement 

   F1 = R1; 

Only those fields of R1 which were inherited from Figure will have their values copied to the corresponding fields of F1.  Because inheritance is a nonsymmetric relationship, F1 may not be assigned to R1. 

Syntax Display 

----------------------------------------------------------------- 

Derived Class Definition 

Form:     class  subclass name :public base class

          {     

           protected:

             data member list;  

             method heading list;

           public:

             data member list;  

             method heading list;

           private:

             data member list;  

             method heading list;

         }

Example: class Person

         {

          protected:

            char Name[Size];

          public:

            void Init(); 

            void Display();

         }

         class Student :public Person

         {

          protected:

            float GPA;

          public: 

            void Init (char * N,

                       float R);  

            void Display();

         } 

Interpretation: The definition for the derived class Student specifies its base class name (Person) following the reserved word public.  The base class must have been defined previously.  The derived class inherits all data members which are declared to be either public or protected in the base class. 

      The derived class inherits all base class method members which it does not redefine.  Once a method member is redefined by a derived class its scope is the derived class. 

-----------------------------------------------------------------  

Exercises for Section 4.2 

Self-Check 

1. What is the reserved word protected used for in base class

   definitions?

2. What are the advantages of using object inheritance to extend

   object types?

Programming 

1. Implement Circle and Triangle as classes derived from base

   class Figure, using the declarations in the figfamil.h header

   file as a guide.

2. Write a client program to test the implementation of your

   derived classes Circle and Triangle.

4.3  Constructors and Virtual Methods

C++ allows us to define special method members known as constructors which allow us to initialize class instances automatically when they are declared in a client program.  C++ also allows us to designate selected method members as virtual methods.  By declaring a method virtual, we indicate to the C++ compiler that the method with the same argument list may be redefined in some future derived class.

Automatic Initialization of Class Instances

To make use of instances of Figure or any of its subclasses a client program must call the appropriate Init method defined for the class to make sure that the class data members are properly defined.  Since explicit initialization is easy to forget, we would like to have it done automatically for us.  Figure 4.11 contains the header file for a Figure class library which contains constructors that automatically initialize instances of the classes Figure, Rectangle, and Square when they are declared in client programs.

Figure 4.11  Header File figfam2.h

_________________________________________________________________

#include <fstream.h>

#include <string.h>

#include <math.h>

//Header file for Figure class hierarchy

const Size = 9;

//Base class declaration

class Figure

{

 protected:

   char Name[Size];

   float Area;

   float Perimeter;

 public:

   Figure();

   virtual void Display();

   char *GetName();

   float GetArea();

   float GetPerim();

};

//Derived class Rectangle declaration

class Rectangle :public Figure

{

 protected:

   float Width;

   float Length;

 public:

   Rectangle();

   Rectangle(float LengthVal,  //input - rectangle length


        float WidthVal);  //input - rectangle width

   void ComputePerim();

   void ComputeArea();

   void Display();

};

//Derived class Square declaration

class Square :public Rectangle

{

 public:

   Square();

   Square(float SideVal);  //input - square side length

   void Display();

};

_________________________________________________________________

     Each class constructor in Figure 4.11 has the same name as its class (eg. Figure(), Square(float SideVal)) .  Also, there are no return types specified for any of the constructors.  It is possible for a class to have more than one constructor, as long as each class constructor has a different set of argument types.  For example, Rectangle has too constructors: one with arguments and one without.

     In general, when you define a hierarchy of classes it is necessary to define one constructor type in each class or subclass which has no arguments.  A constructor without arguments is used as a default constructor in the declaration of any class or derived class instance.  The unique property of a constructor is that it automatically executes each time a class instance is declared.  For example, the statements below could be used to declare and initialize MyFigure, MyRectangle, and MySquare in a client program.

  //initial MyFigure using default Figure constructor

  Figure MyFigure;

  //initialize MyRectangle using constructor prototype

  //Rectangle(float LengthVal, float WidthVal)

  Rectangle MyRectangle = Rectangle(5.0, 10.0);

  //initialize MySquare using constructor prototype

  //Square(float SideVal)

  Square MySquare = Square(7.0);

     Figure 4.12 contains the implementations of each of the constructors whose prototypes appear in Figure 4.11.  You may notice that in many cases the implementation a class constructor is identical to the implementation of method Init in the corresponding class in Figure 4.9.  Even though the implementations of the default constructors for classes Rectangle and Square call the default constructor for their base class Figure as a matter of programmer convenience, they are not required to do so by C++.  As we will discuss next, constructors are also important for classes containing virtual functions.

Figure 4.12  Figure Class Constructors

__________________________________________________________________

//Figure class constructor

Figure::Figure()

//Initializes figure with blank Name fields.

{

  strset(Name, ' ');

  Area = 0.0;

  Perimeter = 0.0;

}

//Rectangle class constructors

Rectangle::Rectangle()

//Default constructor for Rectangle class.

{

  Figure::Figure();

  strcpy(Name, "Rectangle");

  Length = 0;

  Width = 0;

}

Rectangle::Rectangle(float LengthVal, float WidthVal)

//Initializes Rectangle class instance.

//Pre : None.

//Post: Rectangle instance initialized, with data members Name,

//      Length, and Width defined.

{

  strcpy(Name, "Rectangle");

  Length = LengthVal;

  Width = WidthVal;

}

//Square class methods

Square::Square()

//Default constructor for Square class.

{

  Rectangle::Rectangle();

  strcpy(Name, "Square");

}

Square::Square(float SideVal)

//Initializes Square class instance.

//Pre : None.

//Post: Square instance initialized, with data members Name,

//      Length, and Width defined.

{

  strcpy(Name, "Square");

  Width = SideVal;

  Length = SideVal;

}

__________________________________________________________________

Virtual Methods

You may notice that the reserved word virtual precedes the prototype for method Display in the definition of class Figure (see Figure 4.11).  This tells the C++ compiler that method Display is to be treated as a virtual method in instances of class Figure or any of its derived classes.  By declaring a method as virtual in a class definition we indicate to the C++ compiler that the implementation of this method may change in some derived class.  By default the C++ compiler treats all methods as if they are static methods.

     Calls to static methods are resolved during program compilation, while calls to virtual methods are resolved at program run-time.  When static methods are redefined (or overridden) in a derived class, it is permissible to make changes in the method argument lists or function return types.  Virtual methods must contain identical argument lists and function return types in all derived classes.  For reasons we will explain more fully in Chapter 14, methods which are likely to be redefined in derived classes should be declared as virtual methods to maximize their reusability.

     Constructors may not be virtual.  Some languages require that objects containing virtual methods be explicitly initialized at run-time using constructors.  C++ does not require the use of constructors for a class with virtual methods, unless the class itself is defined as a virtual class.  We will not make use of virtual classes in this text.

Exercises for Section 4.3 

Self-Check 

1. Why would you need to use a constructor method to initialize an

   object instance?

2. Why would you not want to use the reserved word virtual to

   define a method in a base class specification?

Programming Exercises 

1. Rewrite your implementations subclasses Circle and Triangle

   from Section 4.2 so that they contain constructors, use Figures

   4.11 and 4.12 as a guide.

2. Rewrite your client program from Section 4.2 to make use of

   your constructors from Programming Exercise 1 in this section.

Section 4.4  Templates

In Chapter 3, we implemented an abstract array type as class Vector.  In Section 3.1, we demonstrated the use of Vector in a program which needed an abstract array of characters. If we needed an abstract array of integers in a future application, we would have to change the type definition for ElementType in the header file element.h from char to int and then recompile the entire class library.  Even if we decide that the cost of recompilation is acceptable to us, we are faced with the fact that there is no way we could make use of our Vector class to implement an abstract array of integers and an abstractly array of characters in the same client program.  However, we could do this by defining a class hierarchy and using the C++ inheritance mechanism.  An even easier alternative is to define Vector as a class template.

     Using a C++ template allows us to define our class data and method members in terms of parameterized types.  For our purposes in this section, we might view these template parameters as type place-holders which will be used to represent the actual types as needed when we develop our client programs.  Aside from these parameterized types, the rest of the code in a template remains unchanged when a template is used in an application program.

     The mechanics of writing class templates and matching parameterized types in C++ can be very complicated.  However, the concept of templates is a powerful and important one.  In this section we provide a brief introduction and have deliberately omitted details which will be discussed in Chapter 14.

     Consider the class template shown in Figure 4.13.  This class definition is similar to the Vector class we developed in Section 4.1, but we have T as a place-holder for the type of the element housed in the array.  Two other major differences are:  the first is that the implementation of each method member is included as part of the class definition and the second is that a struct definition is used to define the element type for the array.  Each these changes is necessary  because it is very difficult to implement class method members outside the body of the class template definition.  Thus, when specifying a class template definition, we will use full function definitions, not prototypes, for each function required in the template.  To make it easy to import a template definition into a client program we will house it in the header file.

Figure 4.13  Vector Class Template

-----------------------------------------------------------------

#include <iostream.h>

const Max   = 20;

const True  =  1;

const False =  0;

template<class T> class Vector

{

  struct

  {

    T Data;            //field Data is type T

    int Defined;       //field Defined is type int 

  } Elements[Max];     //array of Max items

 public:

   Vector::Vector()

   //Creates an empty abstract array.

   {

     int Index;

     for (Index = 0; Index < Max; ++Index)

       Elements[Index].Defined = False;

   }

   void Vector::Init(T X)

   //Initialize all elements to X

   //Pre : Vector created and X defined.

   //Post: All elements set to X and marked as defined.

   {

     int Index;

     for (Index = 0; Index < Max; ++Index)

     {

       Elements[Index].Data = X;

       Elements[Index].Defined = True;

     }

   }

   void Vector::Store (T X, int I)

   //Stores X at position I in abstract array.

   //Pre : Vector created; X and I are defined.

   //Post: Elements[Index].Data is X and position I is defined.

   {

     Elements[I].Data = X;

     Elements[I].Defined = True;

   }

   void Vector::Retrieve(T &X, int I, int &Success)

   //Copies the value stored at vector position I to X.

   //

   //Post: Returns value stored at position I through X and

   //      set Success to True, if position defined; otherwise

   //      Success set to False.

   {

     Success = Elements[I].Defined;

     if (Success)

       X = Elements[I].Data;

   }

};

_________________________________________________________________

     We can use the template in a client program to create abstract arrays with different element types in the same client programs.  For example if the statements below appear in a client program

  typedef Vector<char> CharVec;

  CharVec A;

  typedef Vector<int> IntVec;

  IntVec B;

they instantiate our template class Vector with the types char and int to create the new classes CharVec and IntVec.  Variable A is then initialized as an empty array of characters by the class constructor defined in the class template Vector. Similarly, B is initialized as an empty array of integers.  Note that two steps are used.  The first step is to define a new class from the template using a typedef statement.  Subsequently we can declare instances of the new class. 

     The general forms of our simplified class template and class instance declarations are presented in the C++ syntax displays which appear below.  Of course, when defining a new type in this manner we must be careful not to include any operations which are not syntactically correct for the types used to instantiate the class.  For example, if a class template contains operations on type int data, we need to avoid trying to use a type like char or Figure when we instantiate it.  However, as long as we are careful to ensure that all class data member and method member references make sense, the use of templates provides a very powerful tool to use in constructing reusable C++ software components.

-----------------------------------------------------------------

C++ Syntax Display

Template Classes: Introductory Version

This is a restricted form which does not show the full generality of C++ templates.

Form:    template <class template parameter> class class name

         {

          protected:

            data member list;

            method member implmentations;

          public:        

            data member list;

            method member implementations;

          private:

            data member list;

            method member implmentations;

         }

Example:  see Figure 4.13

Interpretation:  The template class prefix

  template <class T>

specifies that a template is being declared using parameter T.  Once T has been introduced in the prefix, it can be used as we would use any type in writing C++ statements.

      Template classes can be used to declare several similar class instances using typedef statements like the one shown below

  typedef class template name<type> new type name;

followed by variable definition statements of the form

  new type name instance variable;

------------

     It is possible to define class templates which have more than one parameter.  For templates with multiple parameters, the parameters in the definition, as well as those in the type definitions using the template are separated by commas.  An actual class template parameter may be a type name, a constant, a constant expression, or function name.  Adding an integer parameter to our Vector template would allow us to define abstract arrays of differing sizes as well.  For example

  template<class T, int Size> class Vector

  {

    struct

    {

      T Data;             //Data field is type T

      int Defined;        //Defined field is int

    } Elements[Size];     //array of Size items

   public:

     ...

  }

would allocate storage for an abstract array with Size elements of type T.  The statements below show how we can instantiate arrays of 100 integers and 26 characters.

  typedef Vector<int, 100> BigInt;

  BigInt X;

  type Vector<char, 26> Alfa;

  Alfa Z;

Note that any user-defined type, including structs and classes can be used as the first parameter to instantiate our template class. This allows us create arrays of stucts just as easily.

Exercises for Section  4.4

Self-Check 

1. What is the primary advantage of using class templates instead

   of editing and recompiling the class libraries used by a client

   program?

Programming Exercises

1. Write a client program which tests our Vector class template.

2. Rewrite our Vector class template so that it makes use of

   parameter Size to define classes with different size arrays.

Section 4.5  Type Conversion

Typecasting is the process of converting a data value from one data type to another.  You may have studied typecasting operations on built-in types your previous programming course.  We will look at typecasting in more detail after we discuss pointer variables in Chapter 8.  In this section we will discuss the use of constructors as conversion functions.  We will also introduce the concept of operator overloading as a means of converting one user defined object to another. 

Conversion Using Constructors

In data structures work it is sometimes necessary to map data of one type onto another type.  This may happen during assignment operations, passing values to function arguments, or returning values from functions.  The C++ compiler knows how to perform certain conversions among the C++ built-in types.  Programmers can use typecasting to force other conversions among built-in types.  For example in C and C++, the statements

  int I = 3;

  float X;

  X = (float) I;     //C style typecast

have the effect of mapping the value stored as an integer 3 in variable I to a value 3 stored as a floating point number 3 in variable X.  In C++ we can also use functional style notation

  X = float(I); 

to accomplish the same task.  This is not true for every conversion we might like to do, especially when we want to convert from one user-defined type to another.

     C++ allows us to specify constructors with single arguments as type conversion functions.  Consider the constructors for OneClass shown in Figure 4.14.  The two constructors with single arguments can be used to do type conversion as well as class instance initialization.

Figure 4.14  Constructors as Type Conversion Functions

-----------------------------------------------------------------

#include <iostream.h>

typedef int IntArray[2];

typedef struct

{

  int A, B;

} IntStruct;

class OneClass

{

 protected:

   float A, B;             //two data members

 public:

   OneClass();             //constructors

   OneClass(IntArray X);

   OneClass(IntStruct Y);

   void Display();

};

OneClass::OneClass()

//Default constructor

{

}

OneClass::OneClass(IntArray X)

//Constructor to allow conversion from integer arrays

{

  A = X[0];

  B = X[1];

}

OneClass::OneClass(IntStruct Y)

//Constructor to allow conversion from IntStruct variables

{

  A = Y.A;

  B = Y.B;

}

void OneClass::Display()

//Display object data members.

{

  cout << "1st data member = " << A << "\n";

  cout << "2nd data member = " << B << "\n";

}

-----------------------------------------------------------------

     We could use the statements below in a client program to declare and initialize instances I, J, K of OneClass, with the data in array X.

  IntArray X;     //array of 2 integer elements

  X[0] = 1;

  X[1] = 2;

  OneClass I = OneClass(X);   //ordinary constructor call

  OneClass J = (OneClass) X;  //C style typecast

  OneClass K = X;             //conversion constructor

Similarly we could use the statements 

  IntStruct Y;    //struct with 2 integer data fields

  Y.A = 3;

  Y.B = 4;

  OneClass L = OneClass(Y);   //constructor initialization

  OneClass M = (OneClass) Y;  //C style typecast

  OneClass N = Y;             //conversion constructor

to initialize instances L, M, and N of OneClass with the values housed in struct Y.  To do conversions from instances of OneClass to instances of some other class will require us to define a conversion operator.

Conversion Operators

A conversion operator can be used to convert an instance of one class into an instance of another class or into an instance of some built-in type.  For example, in Figure 4.15 we have modified our definition of OneClass to include the prototype for an operator function TwoClass.  In this example TwoClass is already defined as a constructor for another object,  so the operator prototype in OneClass causes the C++ compiler to add a second meaning for TwoClass.  Identifiers with more than one valid meaning are said to be overloaded. 

Figure 4.15

-----------------------------------------------------------------

class TwoClass

{

  protected:

    IntArray A;

  public:

    TwoClass();

    TwoClass(IntArray X);

    void Display();

}

TwoClass::TwoClass()

//Default constructor;

{

}

TwoClass::TwoClass(IntArray X)

//Constructor to allow initialization from integer array

{

  A[0] = X[0];

  A[1] = X[1];

}

void TwoClass::Display()

//Display data members

{

  cout << "A[0] = " << A[0] << "\n";

  cout << "A[1] = " << A[1] << "\n";

}

class OneClass

{

 protected:

   float A, B;

 public:

   OneClass();

   OneClass(IntArray X);

   OneClass(IntStruct Y);

   void Display();

   operator TwoClass();

};

//the other OneClass method implmentations are unchanged

OneClass::operator TwoClass()

//Overloaded typecast to allow conversion to TwoClass

{

  IntArray X;

  X[0] = A;

  X[1] = B;

  TwoClass Y = TwoClass(X);

  return(Y);

}

-----------------------------------------------------------------

The statements below could be used in a client program to initialize Y as an instance of OneClass and then use our overloaded typecast operator to copy the contents of Y

to Q (an instance of TwoClass).

  IntStruct Y;                 //struct with 2 integer data fields

  Y.A = 5;

  Y.B = 6;

  OneClass W = Y;             //create OneClass instance W

  TwoClass Q = (TwoClass) W;  //convert W to TwoClass instance

While it may not make sense for this example, we could define an overloaded operator to convert instances of OneClass to the built-in type int by including the method prototype

  operator int();

in the class definition.

     One of the nice features of typecast operators and conversion constructors is that once they are defined the compiler can automatically call these methods as they are needed.  You do need to be careful though to have only one definition present for each type conversion operation within the scope of a given function.

Exercises for Section 4.5

Self-Check

1. When would you want to use a constructor conversion function

   and an overloaded typecast operator?

Programming

1. Write a program allows instances of class Square to be

   converted into instances of class Rectangle and vice-versa.

Chapter Review

In the first part of this chapter we emphasized the idea of building reusable software components using C++ classes and inheritance.  We introduced this topic by trying to implement a family of related objects using a C++ union type and examining the shortcomings of this solution.  We were able to implement a set of easily reused classes by making them descendants of a common base class Figure.

     To make automatic class initialization possible we introduced the notion of class constructors.  We also introduced the concept of virtual methods, which are to used when derived classes are likely to redefine the methos behavior (but not its argument or return types).

     Template classes were introduced as a way to develop a single parameterized class definition which could be instantiated for several parameter types in the same client program. Lastly, we introduced the topic of type conversion as it relates to simple class definitions.

Chapter 4 Exercises

Quick-Check Exercises

1. When should you use a union type?

2. What does an instance of a derived class inherit from its

   base class?

3. When should the virtual directive be used in declaring an

   object method?

Answers to Quick-Check Exercises

1. When you need a record type which has some fields which are the

   same for all data cases and some fields need to be different

   for some of the data items.  

3. The base class data and method members.

4. Any time a method is likely to be redefined by a descendant

   object and the method heading will not need to be changed.

Review Exercises

1. Why should a programmer always include a union tag field in the

   declaration of a union?

2. Write a union record declaration for Supplies, which consists

   of Paper, Ribbon, or Labels. For Paper, the information needed

   is the number of sheets per box and the size of the paper. For

   Ribbon, the size, color, and kind (Carbon or Cloth) are needed

   For Labels, the size and number per box are needed. For each

   supply, the cost and number on hand must be recorded.

3. Redo review exercise 5, but declare Supplies as a family of   

   descendant objects. Include method stubs for reading and

   writing objects of each Supply type.

Programming Projects

1. Implement an abstract two 2-dimensional array as an object

   descended the List object shown in Fig. 3.XX.  Methods Store

   and Retrieve will need to be declared as static methods. (Why?)

2. Define a Matrix object with methods for matrix input, output, 

   addition, subtraction, and multiplication. Write a client

   program to test your Matrix object.

3. Implement a FractionADT as a an object, which includes methods

   for adding, subtracting, multiplying, dividing two fractions;

   reducing a fraction, and computing its decimal equivalent. Use

   the skeletal object declaration as part of your solution. 

     type 

       Fraction = object

                  private

                    Num, Denom : Integer;

                  end; {Fraction}

4. A company wants an on-line phone directory which will allow 

   phone numbers to be retrieved by room number as well as by

   name.  Implement this directory as an object descended from the

   LinearList object shown in Fig. 1.12.  Add methods to allow for

   manipulation of directory entries by room number.

5. Implement a object which uses a three dimensional array to 

   represent a building (floors 1 to 3, wings A and B, and rooms

   1 to 5).  Each entry in the array will an object containing

   a person's name and phone number.  Define object methods which

   will initialize an empty building, read data into the building,

   display the entire building, display a particular floor of the

   building, retrieve an entry for a particular room, and store a 

   new entry in a particular room.  The designate a particular 

   room a client program must provide the floor number, wing

   letter, and room number. 

6. Write a menu-driven program that tests the Building object

   from project 5.  Include procedures which display the menu

   choices and provide the user with help if requested. 

