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        A recursive function is one that calls itself.  This ability enables a recursive function to be repeated with different argument values.  You can use recursion as an alternative to iteration (looping).  Generally a recursive solution is less efficient in terms of computer time than an iterative one due to the overhead for the extra function calls; however, in many instances the use of recursion enables us to specify a very natural, simple solution to a problem that would otherwise be very difficult to solve.  For this reason,  recursion is an important and powerful tool in problem solving and programming.

5.1  The Nature of Recursion

     Problems that lend themselves to a recursive solution have the following characteristics.

     .  One or more simple cases of the problem (called stopping cases) have a simple, non-recursive solution.

     .  For the other cases, there is a process (using recursion) for substituting one or more reduced cases of the problem that are closer to a stopping case.

     .   The problem can eventually be reduced to stopping cases only, all of which are relatively easy to solve.

The recursive algorithms that we write will generally consist of an if statement with the form shown below.

     if the stopping case is reached then

       Solve it

     else

       Reduce the problem using recursion

     Figure 5.1 illustrates what we mean by this, starting with a problem of size N.  Let's assume that for any N, we can split this problem into one involving a problem of size 1, which we can solve (a stopping case), and a problem of size N - 1, which we can split further.  If we split the problem N times, we will end up with N problems of size 1, all of which we can solve.  

Figure 5.1  Splitting a Problem into Smaller Problems
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Example 5.1:

As a simple example of this approach, let's consider how we might solve the problem of multiplying 6 by 3 assuming that we know our addition tables but not our multiplication tables.  The problem of multiplying 6 by 3 can be split into the two problems:

    1.  Multiply 6 by 2.

    2.  Add 6 to the result of problem 1.

Since we know our addition tables, we can solve problem 2 but not problem 1.  However, Problem 1 is simpler than the original problem. We can split it into the two problems 1.1 and 1.2 below, leaving us three problems to solve, two of which are additions.

    1.  Multiply 6 by 2.           1.1  Multiply 6 by 1.

                                   1.2  Add 6 to the result.

    2.  Add 6 to the result of problem 1.

     Even though we don't know our multiplication tables, we are familiar with the simple rule that M x 1 is M for any M, so by solving problem 1.1 (the answer is 6) and problem 1.2, we get the solution to problem 1 (the answer is 12).  Solving problem 2 gives us the final answer (18).    

     Figure 4.2 implements this approach to doing multiplication as the recursive C++ function Multiply.  The stopping case is reached when the condition (N == 1) is true.  In this case, the answer is M (M x 1 is M).  If N is greater than 1, the statement 

     Prod = M + Multiply(M, N - 1);  //recursive step

executes, splitting the original problem into the two simpler problems:

    .  multiply M by N - 1 

    .  add M to the result

The first of these problems is solved by calling Multiply again with N - 1 as its second argument.  If the new second argument is greater than 1, there will be additional calls to function Multiply.  

     For now, you will have to take our word that function Multiply performs as desired.  We will see how to trace the execution of a recursive function or procedure in the next section.

Figure 5.2  Recursive function Multiply

________________________________________________________________

#include <iostream.h>

int Multiply(int M, int N)

//Performs multiplication using the + operator.

//Pre : M and N are defined and N > 0.

//Post: Returns M x N

{

  int Prod;

  if (N == 1)

    Prod = M;                       //stopping case

  else

    Prod = M + Multiply(M, N - 1);  //recursive step

  return Prod;

}

________________________________________________________________

     The body of function Multiply implements the general form of a recursive algorithm shown earlier and repeated below.

     if stopping case is reached then

       Solve it

     else

       Reduce the problem using recursion

The recursive step in function Multiply 

     Prod = M + Multiply(M, N - 1);  //recursive step

splits the problem of multiplication by N into an addition problem and a problem of multiplication by N - 1.  Note the use of the local variable Prod to hold the value being returned by both the stooping case and the recursive step.  This allows us to write Multiply as a function with exactly one exit point, rather than using two.

Exercises for Section 5.1

Self-check

1. Show the problems that are generated by the procedure call

   statement Multiply(5, 4).  Use a diagram similar to Fig.

   5.1.

2. Write a pseudocode representation of a recursive algorithm

   which uses repetitive subtraction to divide M by N.

5.2  Tracing a Recursive Procedure or Function

     Hand-tracing an algorithm's execution provides us with valuable insight as to how that algorithm works.  We can also trace the execution of a recursive function.  We will illustrate how to do this by studying two recursive functions next.

Tracing a Recursive Function

     In the last section, we wrote the recursive function Multiply (see Fig. 5.2).  We can trace the execution of the function designator Multiply(6, 3) by drawing an activation frame corresponding to each call of the function.  An activation frame shows the parameter values for each call and summarizes its execution.

     The three activation frames generated to solve the problem of multiplying 6 by 3 are shown in Fig. 5.3.  The part of each activation frame that executes before the next recursive call is in color; the part that executes after the return from the next call is in grey.  The darker the color of an activation frame, the greater the depth of recursion.  

Figure 5.3  Trace of Function Multiply

________________________________________________________________
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     The value returned from each call is shown alongside each black arrow.  The return arrow from each procedure call points to the operator + because the addition is performed just after the return.

     Figure 5.3 shows that there are three calls to function Multiply.  Argument M has the value 6 for all three calls; argument N has the values 3, 2, and finally 1.  Since N is 1 in the third call, the value of M (6) is returned as the result of the third and last call.  After returning to the second activation frame, the value of M is added to this result and the sum (12) is returned as the result of the second call.  After returning to the first activation frame, the value of M is added to this result and the sum (18) is returned as the result of the original call to function Multiply.

Tracing a Void Function

Example 4.2

Function Palindrome in Figure 5.4 is a recursive void function that reads in a string of length N and prints it out backwards.  (A palindrome is a string of characters that reads the same backwards as forwards.)  If the function call 

     Palindrome(5);

is executed, the five characters entered at the screen will be printed in reverse order.  If the characters abcde are entered when this function is called, the line

     abcde

     edcba

will appear on the screen.  The letters in color are entered as data and the letters in black are printed.  If the procedure call statement 

     Palindrome(3);

is executed instead, only three characters will be read, and the line

     abc

     cba

will appear on the screen.

Figure 5.4   Function Palindrome

________________________________________________________________

#include <iostream.h>

void Palindrome(int N)

//Displays string of length N in the reverse order in

//which is was entered.

//Pre : N >= 1.

//Post: Displays N characters.

{

  char Next;            //next data character

  if (N <= 1)

  {                    //stopping case

    cin >> Next;

    cout << Next;

  }

  else

  {                    //recursive step

    cin >> Next;

    Palindrome(N - 1);

    cout << Next;

  }

}

________________________________________________________________

     Like most recursive functions, the body of function Palindrome consists of an if statement that evaluates a terminating condition, (N <= 1).  When the terminating condition is true, the problem has reached a stopping case: a data string of length 1.  If (N <= 1) is true, the functions cin and cout are called.  

     If the terminating condition is false (N greater than 1), the recursive step (following else) is executed.  The cin function returns the next data character.  The function call statement

     Palindrome(N - 1);

calls the procedure recursively with the argument value decreased by 1.  The character just read is not displayed until later.  This is because the call to function cout comes after the recursive procedure call; consequently, the call to function cout cannot be performed until after the function execution is completed and control is returned back to the cout call statement.  For example, the character that is read when N is 3 is not displayed until after the procedure execution for N equal to 2 is done.  Hence, this character is displayed after the characters that are read when N is 2 and N is 1.  

     To fully understand this it is necessary to trace the execution of the function call statement 

     Palindrome(3); 

This trace is shown in Figure 5.5  assuming the letters abc are entered as data.

Figure 4.5   Trace of Palindrome(3)
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     The trace shows three separate activation frames for function Palindrome.  Each activation frame begins with a list of the initial values of N and Next for that frame.  The value of N is passed into the function when it is called, because N is a value parameter; the value of Next is initially undefined, because Next is a local variable.  

     Next, the statements that are executed for each frame are shown. The statements in color are recursive procedure calls and result in a new activation frame, as indicated by the colored arrows.  A function return occurs when the all function statements have been executed.  This is indicated by the word Return in Figure 5.5 and a black arrow that points to the statement in the calling frame to which the procedure returns.  Tracing the colored arrows and then the black arrows gives us the sequence of events listed below.  To help you understand this figure, all the statements for a particular activation frame are indented to the same column and have the same background color.

     Call Palindrome with N equal to 3.

       Read the first character (a) into Next.

       Call Palindrome with N equal to 2.

         Read the second character (b) into Next.     

         Call Palindrome with N equal to 1.

           Read the third character (c) into Next.     

           Display the third character (c).

           Return from third call.

         Display the second character (b).

         Return from second call.

       Display the first character (a).

       Return from original call.

     As shown, there are three calls to function Palindrome, each with a different argument value.  The function returns always occur in the reverse order of the function calls; i.e. we return from the last call first, then we return from the next to last call, and so on.  After we return from a particular execution of the procedure, we display the character that was read into Next just prior to that function call.

Argument and Local Variable Stacks

     You may be wondering how C++ keeps track of the values of N and Next at any given point.  C++ uses a special data structure called a stack, that is analogous to a stack of dishes or trays.  Think of the countless times you have stood in line in a cafeteria.  Recall that often times clean dishes are stored in a stack of dishes which is placed in a spring loaded device which serves up one dish at a time to us.  When we need a dish, we always remove the one placed on the stack most recently.  This causes the next to last dish placed on the stack to move to the top of the stack.  (The stack data structure is discussed further in Section 6.1.)   

     Similarly, whenever a new function call occurs, the argument value associated with that call is placed on the top of the argument stack.  Also, a new cell whose value is initially undefined is placed on top of the stack that is maintained for the local variable Next.  Whenever N or Next is referenced, the value at the top of the corresponding stack is always used.  When a procedure return occurs, the value currently at the top of each stack is removed, and the value just below it moves to the top.

Example 5.3

Let's look at the two stacks right after the first call to Palindrome.  There is one cell on each stack, as shown below.

After first call to Palindrome

     N     Next

    |3|     |?|

     -       -

The letter a is read into Next just before the second call to Palindrome.

     N     Next

    |3|     |a|

     -       -

After the second call to Palindrome, the number 2 is placed on top of the stack for N, and the top of the stack for Next becomes undefined again as shown below.  The darker color cells represent the top of each stack.

After second call to Palindrome

     N     Next

    |2|     |?|

    |3|     |a|

     -       -

The letter b is read into Next just before the third call to Palindrome.

     N     Next

    |2|     |b|

    |3|     |a|

     -       -

However, Next becomes undefined again right after the third call.

After third call to Palindrome

     N     Next

    |1|     |?|

    |2|     |b|

    |3|     |a|

     -       -

     During this execution of the procedure, the letter c is read into Next, and c is echo printed immediately since N is 1 (the stopping case).

     N     Next

    |1|     |c|

    |2|     |b|

    |3|     |a|

     -       -

The procedure return causes the values at the top of the stack to be removed as shown below.

After first return

     N     Next

    |2|     |b|

    |3|     |a|    

     -       -

     Since control is returned to a cout function call statement, the value of Next (b) at the top of the stack is then displayed.  Another return occurs, causing the values currently at the top of the stack to be removed.

After second return

     N     Next

    |3|     |a|

     -       -

     Again control is returned to a cout function call and the value of Next (a) at the top of the stack is displayed.  The third and last return removes the last pair of values from the stack and N and Next both become undefined.

After third return

     N     Next

    |?|     |?|

     -       -

     We will see how to declare and manipulate stacks ourselves in the next chapter.  Since these steps are all done automatically by C++, we can write recursive procedures without needing to worry about the stacks.

Implementation of Argument Stacks in C++

For illustrative purposes, we have used separate stacks for each argument in our discussion; however, the compiler actually maintains a single stack.  Each time a call to a function occurs, all its arguments and local variables are pushed onto the stack along with the memory address of the call statement.  The latter gives the computer the return point after execution of the function.  Although there may be multiple copies of a function's arguments saved on the stack, there is only one copy of the function body in memory.

Exercises for Section 5.2

Self-check

1.  Why is N a value parameter in Figure 5.4?

2. Assume the characters *+-/ are entered for the procedure call

   statement

     Palindrome(4);

   What output line would appear on the screen?  Show the contents

   of the stacks immediately after each procedure call and return.

3. Trace the execution of Multiply(5, 4) and show the stacks

   after each recursive call.

5.3  Recursive Mathematical Functions

     Many mathematical functions are defined recursively.  An example is the factorial of a number n (n!).

     . 0! is 1

     . n! is n x (n - 1)!, for n > 0

Thus 4! is 4 x 3 x 2 x 1, or 24.  It is quite easy to implement this definition as a recursive function in C++.

Example 5.4

Function Factorial in Figure 5.6 computes the factorial of its argument N.  The recursive step

     Factor = N * Factorial(N - 1);

implements the second line of the factorial definition above.  This means that the result of the current call (argument N) is determined by multiplying the result of the next call (argument    N - 1) by N.  

Figure 5.6  Recursive Function Factor

________________________________________________________________

#include <iostream.h>

int Factorial(int N)

//Computes the factorial of N (N!).

//Pre : N is defined and N >= 0.

//Post: Returns N!

{

  int Factor;

  if (N == 0)

    Factor = 1;

  else

    Factor = N * Factorial(N - 1);

  return Factor;

}

________________________________________________________________

     A trace of 

        Fact = Factorial(3);

is shown in Figure 5.7.  The value returned from the original call, Factorial(3), is 6, and this value is assigned to Fact.  Be careful when using the factorial function as its value increases very rapidly and could lead to an integer overflow error (e.g., 10! is 24320). 

Figure 4.7  Trace of Fact := Factor(3)
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     Although the recursive implementation of function Factorial follows naturally from its definition, this function can be implemented easily using iteration.  The iterative version is shown in Figure 5.9. 

Figure 5.9 Iterative Function Factor

________________________________________________________________

#include <iostream.h>

int Factorial(int N)

//Computes the factorial of N (N!).

//Pre : N is defined and N >= 0.

//Post: Returns N!

{

  int I;       //loop control variable

  int Factor;  //storage for accumulating product

  Factor = 1;

  for (I = 2; I <= N; I++)

    Factor = Factor * I;

  return Factor;

}

________________________________________________________________

     Note that the iterative version contains a loop as its major control structure whereas the recursive version contains an if statement.  Also, a local variable, Factor, is needed in the iterative version to hold the accumulating product.  It should noted here, that while it is very easy for us to implement Factorial using recursion, programmers would generally not do so. The iterative version of Factorial is just as easy to program and would run faster and using less computer memory.

Example 5.5

The Fibonacci numbers are a sequence of numbers that have many varied uses.  They were originally intended to model the growth of a rabbit colony.  Although we will not go into details of the model here, the Fibonacci sequence 1,1,2,3,5,8,13,21,34,... certainly seems to increase rapidly enough.  The fifteenth number in the sequence is 610 (that's a lot of rabbits!).  The Fibonacci sequence is defined below.

     .  Fib1 is 1

     .  Fib2 is 1

     .  Fibn is Fibn-2 + Fibn-1, for n > 2.

Verify for yourself that the sequence of numbers shown in the paragraph above is correct.  A recursive function that computes the Nth Fibonacci number is shown in Figure 5.9.

Figure 4.9  Recursive function Fibonacci

________________________________________________________________

#include <iostream.h>

int Fibonacci(int N)

//Computes Nth Fibonnacci number.

//Pre : N is defined and N > 0.

//Post: Returns the Nth Fibonnacci number.

{

  int Fib;

  if ((N == 1) || (N == 2))

    Fib = 1;

  else

    Fib = Fibonacci(N - 2) + Fibonacci(N - 1);

  return Fib;

}

______________________________________________________________

     Although easy to write, the Fibonacci function is not very efficient because each recursive step generates two calls to the Fibonacci function.  As shown in Figure 5.10, the recursive Fibonnacci function repeats the same calculation several times during the evaluation of the expression

  Fib = Fibonacci(5);

This does not happen in an iterative implementation of the Fibonacci function.

Figure 5.10  Evaluation of Recursive Function Fibonacci

___________________________________________________________________

                               Fibonacci(5)

                             /              \ 

                Fibonacci(4)                    Fibonacci(3)

               /            \                  /            \
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______________________________________________________________________

Example 5.6

Euclid's algorithm for finding the greatest common divisor of two positive integers, GCD(M, N), is defined recursively below.  The greatest common divisor of two integers is the largest integer that divides them both.  Thus the value of GCD(24, 18) is 6.

     .  GCD(M,N) is N if N divides M

     .  GCD(M,N) is GCD(N, remainder of M divided by N) otherwise

This algorithm states that the GCD is N if N divides M.  If N does not divide M, the answer is obtained by finding the GCD of N and the remainder of M divided by N.  If M is smaller than N, the function call GCD(N, remainder of M divided by N) evaluates to GCD(N, M).  So that GCD(18, 24) is also 6.  The declaration and use of the C++ function GCD is shown in Figure 5.11.

Figure 5.11  Euclid's Algorithm for the Greatest Common Divisor

________________________________________________________________

#include <iostream.h>

int GCD(int M, int N)

//Finds greatest common divisor of M and N.

//Pre : M and N are defined and both > 0.

//Post: Returns greatest common divisor of M and N.

{

  int Divisor;

  if (M % N == 0)

    Divisor = N;

  else

    Divisor = GCD(N, M % N);

  return Divisor;

}

void main()

//Prints greatest common divisor of two integers.

{

  int M;   //input items

  int N;

  cout << "Enter two positive integers separated by space: ";

  cin >> M >> N;

  cout << "Their greatest common deviser is " << GCD(M, N);

  cout << "\n";

}

Enter two positive integers separated by a space: 24 84

Their greatest common divisor is 12  

________________________________________________________________

Exercises for Section 4.3

Self-check

1. Complete the following recursive function that calculates the

   value of a number (Base) raised to a power (Power).  Assume

   that Power is positive.

      int PowerRaiser (int Base, int Power)

      {

        int Prod;

        if (Power == ______)

          Prod = ________;

        else

          Prod = ________ * ________;

        return Prod;

      }

2.  What is the output of the following program?  What does

    function Strange compute?

      int Strange (int N)

      {

        int Res;

        if (N == 1) then

          Res = 0;

        else 

          Res = 1 + Strange(N % 2);

        return Res;

      }

      void main()

      {

        cout << Strange(8) << "\n"

      } 

3.  Explain what would happen if the terminating condition for

    function Fibonacci is just (N == 1).

Programming

1.  Write a recursive function, FindSum, that calculates the sum

    of successive integers starting at 1 and ending at N (i.e.,

    FindSum(N) = (1 + 2 + ... + (N-1) + N).

2.  Write an iterative version of the Fibonacci function.

3.  Write an iterative function for the greatest common divisor.

5.4  Recursive Functions with Array Arguments

In this section, we will examine two familiar problems and implement recursive functions to solve them.  Both problems involve processing an array.

Case Study: Printing an Array Backwards

Problem

Provide a recursive solution to the problem of printing the elements of an array in reverse order.

Design Overview  

If the array X has elements with subscripts 1..N, then the element values should be printed in the sequence X[N], X[N-1], X[N-2], ..., X[1], X[0].  The stopping case is printing an array with 1 element (N is 0); the solution is to print that element.  For larger arrays, the recursive step is to print the last array element (X[N]) and then print the subarray with subscripts 1..N-1 backwards.  

Data Requirements

Problem Inputs

An array of integer values (int X[])

The number of elements in the array (int N)

Problem Outputs

The array values in reverse order (X[N], X[N - 1], ... , X[1], X[0])

Initial Algorithm

1.  if N is 0 then

      2.  Print X[0]

    else

    {

       3.  Print X[N]

       4.  Print the subarray with subscripts 0..N

     }

Coding

Function PrintBack in Figure 5.12 implements the recursive algorithm.

Figure 5.12   Function PrintBack

_______________________________________________________________

#include <iostream.h>

void PrintBack(int X[], int N)

//Prints an array of integers (X) with subscripts 0..N.

//Pre : Array X and N are defined and N >= 0.

//Post: Displays X[N], X[N - 1], ... , X[1], X[0].

{

  if (N == 0)

    cout << X[0] << "\n";

  else

  {

    cout << X[N] << "\n";

    PrintBack(X, N - 1);

  }

} 

________________________________________________________________

T​esting 

Given the declarations

  const MaxIndex = 12;

  int Test[MaxIndex];

and the procedure call statement

     PrintBack(Test, 2);

three calls to function cout will be executed in the order indicated below, and the elements of Test will be printed backwards as desired.

     cout << Test[2] << "\n";

     cout << Test[1] << "\n";

     cout << Test[0] << "\n";


To verify this we trace the execution of the procedure  call  statement above in Figure 5.13.  Tracing the color arrows and then the black arrows leads to the sequence of events listed below.

     Call PrintBack  with parameters Test and 2.

       Print Test[2].

       Call PrintBack  with parameters Test and 1.

         Print Test[1].

         Call PrintBack  with parameters Test and 0.

           Print Test[0].

           Return from third call.

         Return from second call.

       Return from original call.

Figure 4.13   Trace of PrintBack(Test, 2)

________________________________________________________________

  PrintBack(Test, 2) Ä¿

ÚÄ                    ³

³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

³ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

³³X is Test          ³ ÚÄ´X is Test          ³ ÚÄ´X is Test      ³

³³N is 2             ³ ³ ³N is 2             ³ ³ ³N is 1         ³

³³2 = 0 is false     ³ ³ ³1 = 0 is false     ³ ³ ³0 = 0 is true  ³

³³Print Test[2]      ³ ³ ³Print Test[1]      ³ ³ ³Print Test[0]  ³

³³PrintBack(Test, 1) ÃÄÙ ³PrintBack(Test, 0) ÃÄÙÚ´Return         ³

À´Return             ÃÄÄÄ´Return             ÃÄÄÙ³               ³

 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ   ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ   ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

__________________________________________________________________

     As shown there are three calls to function PrintBack, each with different parameters.  The function returns always occur in the reverse order of the procedure calls; in other words, we return from the last call first, then we return from the next to last call, and so on.  This time there are no statements left to execute after the returns, because the recursive call      

     PrintBack(X, N - 1);

occurs at the end of the recursive step. 

     Function PrintBack is another example of a function which is easy for us to use in illustrating recursion, but we would probably not implement it as a recursive function in a real program.  An iterative version of function PrintBack, which uses both less processing time and less computer memory, could be implemented very easily using a for loop.

Case Study: Recursive Selection Sort

Problem

We have discussed selection sort and implemented an iterative selection sort procedure.  Because the selection sort first finds the largest element in an array and places it where it belongs, and then finds and places the next largest element and so on, it is a good candidate for a recursive solution. 

Design Overview

The selection sort algorithm follows from the description above.  The stopping case is comes when sorting a subarray with subscripts 0 to 0 which is sorted by definition.  Review Figure 2.11 to see how the elements of an array are placed in their final positions by a selection sort.

Recursive Algorithm for Selection Sort

1.  if N is 0 then

      2.  The array is sorted.

    else

    {

       3.  Place the largest array element in X[N].

       4.  Sort the subarray with subscripts 0..N.

    }

Coding

     This algorithm is implemented as a recursive procedure at the bottom of Figure 5.14.  Function PlaceLargest performs step 3 of the algorithm.  The recursive function SelectSort is simpler to understand than the one shown in Figure 2.12 because it contains a single if statement instead of nested for loops.  However, the recursive procedure will execute more slowly because of the extra overhead due to the recursive function calls.

Figure 5.14  PlaceLargest and Recursive SelectSort

_________________________________________________________________

#include <iostream.h>

void PlaceLargest(int X[], int N)

//Finds largest element in array X[0]..X[N].

//Pre : Array X and N are defined and N >= 0.

//Post: X[N] contains the largest value.

{

  int Temp;       //temporary copy for exchange

  int J;          //array subscript and loop control

  int MaxIndex;   //index of largest so far

  MaxIndex = N;                //assume X[N] is largest

  for(J = N - 1; J >= 0; J--)

    if (X[J] > X[MaxIndex])

      MaxIndex = J;            //X[J] is largest so far

  //assertion: MaxIndex is subscript of largest element

  if (MaxIndex != N)

  {                     //exchange X[N] and X[MaxIndex]

    Temp = X[N];

    X[N] = X[MaxIndex];

    X[MaxIndex] = Temp;

  }

}

void SelectSort(int X[], int N)

//Sorts and array of integers (X) with subscripts 0..N.

//Pre : Array X is defined and N >= 0.

//Post: The array of elements are arranged in ascending

//      numerical order.

{

  if (N > 0)

  {

    PlaceLargest(X, N);     //place largest value in X[N]

    SelectSort(X, N - 1);   //sort subarray 0..N-1

  }

}

_________________________________________________________________

     If N = 0, function SelectSort returns without doing anything.  This behavior is correct because a one element array is always sorted.

Exercises for Section 5.4

Self-check

1. Trace the execution of SelectSort on an array that has the

   integers 5, 8, 10, 1 stored in consecutive elements.        

2. For the array in self-check exercise 1, trace the execution of

   PrintBack.

Programming

1. Provide an iterative procedure that is equivalent to

    PrintBack in Figure 5.12.

2.  Write a recursive procedure prints the elements in an array

     X[0..N] in their normal order.  Use procedure PrintBack as

     a model for your solution.

5.5 Problem Solving with Recursion

The next case study is considerably more complicated than the preceding ones.  It leads to a recursive procedure that solves the Towers of Hanoi Problem.

Problem

The Towers of Hanoi Problem involves moving a specified number of disks that are all different sizes from one tower (or peg) to another.  Legend has it that the world will come to an end when the problem is solved for 64 disks.  In the version of the problem shown in Figure 5.15 there are five disks (labeled 1 through 5) and three towers or pegs (labeled A, B, C). The goal is to move the five disks from peg A to peg C subject to the following rules:

     1.
Only one disk may be moved at a time and this disk must be the top disk on a peg.

     2.  
A larger disk can never be placed on top of a smaller disk.

Fig. 5.15  Towers of Hanoi

_____________________________________________________________

           A                     B                  C   

           ³                     ³                  ³

        1 ÍØÍ                    ³                  ³

      2 ÍÍÍØÍÍÍ                  ³                  ³

    3 ÍÍÍÍÍØÍÍÍÍÍ                ³                  ³

  4 ÍÍÍÍÍÍÍØÍÍÍÍÍÍÍ              ³                  ³

5 ÍÍÍÍÍÍÍÍÍØÍÍÍÍÍÍÍÍÍ            ³                  ³

ÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄ

--------------------------------------------------------------

Analysis

The stopping cases of the problem involve moving one disk only (e.g. "move disk 2 from peg A to peg C").  A simpler problem than the original would be to move four-disks subject to the conditions above, or three-disks, and so on.  Therefore, we want to split the original five-disk problem into one or more problems involving fewer disks.  Let's consider splitting the original problem into the three problems below.

     1.  Move four disks from peg A to peg B.

     2.  Move disk 5 from peg A to peg C.

     3.  Move four disks from peg B to peg C.

     Step 1 moves all disks but the largest to tower B, which is used as an auxiliary tower.  Step 2 moves the largest disk to the goal tower, tower C.  Then, step 3 moves the remaining disks from B to the goal tower where they will be placed on top of the largest disk.  Let's assume that we will be able to perform step 1 and step 2 (a stopping case); Figure 5.16 shows the status of the three towers after completing these steps.  At this point, it should be clear that we can solve the original five-disk problem 

if we can complete step 3.  

Figure 5.16  Towers of Hanoi after steps 1 and 2

________________________________________________________________

           A                   B                     C

           ³                   ³                     ³

           ³                1 ÍØÍ                    ³

           ³              2 ÍÍÍØÍÍÍ                  ³

           ³            3 ÍÍÍÍÍØÍÍÍÍÍÍ               ³

           ³          4 ÍÍÍÍÍÍÍØÍÍÍÍÍÍÍ     5 ÍÍÍÍÍÍÍØÍÍÍÍÍÍÍÍ

ÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ 

_______________________________________________________________

     Unfortunately, we still don't know how to perform step 1 or step 3.  However, both these steps involve four disks instead of five so they are easier than the original problem.  We should be able to split them into simpler problems in the same way that we split the original problem.  Step 3 involves moving four disks from tower B to tower C, so we can split it into two three-disk problems and a one-disk problem:  

     3.1  Move three disks from peg B to peg A.

     3.2  Move disk 4 from peg B to peg C.

     3.3  Move three disks from peg A to peg C.

     Figure 5.17 shows the status of the towers after completing steps 3.1 and 3.2.  We now have the two largest disks on peg C.  Once we complete step 3.3 all five disks will be on peg C as required.  By splitting each n-disk problem into two problems involving n-1 disks and a one disk problem, we will eventually reach all cases of one disk, which we know how to solve.  

Figure 5.17  Towers of Hanoi after Steps 1, 2, 3.1 and 3.2

_______________________________________________________________

         A                   B                       C

         ³                   ³                       ³

         ³                   ³                       ³

      1 ÍØÍ                  ³                       ³

    2 ÍÍÍØÍÍÍ                ³                4 ÍÍÍÍÍØÍÍÍÍÍ 

  3 ÍÍÍÍÍØÍÍÍÍÍ              ³              5 ÍÍÍÍÍÍÍØÍÍÍÍÍÍÍ

ÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ

________________________________________________________________

Design Overview

The solution to the Towers of Hanoi Problem consists of a printed list of individual disk moves.  We need a recursive procedure which can be used to move any number of disks from one peg to another, using the third peg as an auxiliary.  

Data Requirements

Problem Inputs

The number of disks to be moved (int N)

The from peg (char FromPeg)

The to peg (char ToPeg)

The auxiliary peg (char AuxPeg)

Problem Outputs

A list of individual disk moves

Initial Algorithm

1.  if N is 1 then

      2.  Move disk 1 from the from peg to the to peg

    else

    {

      3.  Move N-1 disks from the from peg to the auxiliary 

          peg using the to peg.

      4.  Move disk N from the from peg to the to peg.

      5.  Move N-1 disks from the auxiliary peg to the to

          peg using the from peg.

    }

     If N is 1, a stopping case is reached.  If N is greater than 1, the recursive step (following else) splits the original problem into three smaller subproblems, one of which is a stopping case.  Each stopping case displays a move instruction.  Verify that the recursive step generates the three problems listed above Figure 5.15 when N is 5, the from peg is A, and the to peg is C.

     The implementation of this algorithm is shown as function Tower in Fig. 5.18.  Function Tower has four arguments.  The function call statement

      Tower('A', 'C', 'B', 5);

solves the problem posed earlier of moving five disks from tower A to tower C using B as an auxiliary (see Figure 5.15).

Figure 5.18  Recursive Function Tower

________________________________________________________________

#include <iostream.h>

void Tower(char FromPeg, char ToPeg, char AuxPeg, int N)

//Moves N disks from FromPeg to ToPeg using Auxpeg as an

//auxiliary.

//Pre : FromPeg, ToPeg, AuxPeg, and N are defined.

//Post: Display list of move instructions to transfer the disks.

{

  if (N == 1)

  {

    cout << "Move disk 1 from peg " << FromPeg;

    cout << " to peg " << ToPeg << "\n";

  }

  else

  {                                         //recursive step

    Tower(FromPeg, AuxPeg, ToPeg, N - 1);

    cout << "Move disk " << N << " from peg "<< FromPeg;

    cout << " to peg " << ToPeg << "\n";

    Tower(AuxPeg, ToPeg, FromPeg, N - 1);

  }

}

________________________________________________________________

     In Figure 5.18, the stopping case (move disk 1) is implemented as a call to function cout.  Each recursive step consists of two recursive calls to Tower with a call to cout sandwiched between them.  The first recursive call solves the problem of moving N - 1 disks to the auxiliary peg.  The call to cout displays a message to move disk N to the to peg.  The second recursive call solves the problem of moving the N - 1 disks back from the auxiliary peg to the to peg.

Testing

     The function call statement 

       Tower('A', 'C', 'B', 3);

solves a simpler three-disk problem:  Move 3 disks from peg A to peg C.  Its execution is traced in Fig. 4.19; the output generated is shown in Table 5.1.  Verify for yourself that this list of steps does indeed solve the three-disk problem.

Table 4.1  Output Generated by Tower ('A','C','B',3)              __________________________________________________________

Move disk 1 from peg A to peg C

Move disk 2 from peg A to peg B

Move disk 1 from peg C to peg B

Move disk 3 from peg A to peg C

Move disk 1 from peg B to peg A

Move disk 2 from peg B to peg C

Move disk 1 from peg A to peg C

________________________________________________________________

                           


Figure 4.19  Trace of Tower('A', 'C', 'B', 3)             

_________________________________________________________________​___________     

                                                        ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

Tower ('A','C','B',3)Ä¿                            ÚÄÄÄÄ´FromPeg is 'A'    ³

ÚÄ                    ³                            ³    ³ToPeg is 'C'      ³

³                     ³     ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿³    ³AuxPeg is 'B'     ³

³                     ³ ÚÄÄÄ´FromPeg is 'A'       ³³    ³N is 1            ³

³                     ³ ³   ³ToPeg is 'B'         ³³    ³Move 1 from A to C³

³                     ³ ³   ³AuxPeg is 'C'        ³³ ÚÄÄ´Return            ³

³                     ³ ³   ³N is 2               ³³ ³  ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

³                     ³ ³   ³Tower('A','C','B',1);ÃÙ ³  ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³   ³Move 2 from A to B   ÃÄÄÙÚÄ´FromPeg is 'C'    ³

³ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿³   ³Tower('C','B','A',1);ÃÄÄÄÙ ³ToPeg is 'B'      ³

³³FromPeg is 'A'       ³³ ÚÄ´Return               ÃÄÄ¿  ³AuxPeg is 'A'     ³

³³ToPeg is 'C'         ³³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ  ³  ³N is 1            ³

³³AuxPeg is 'B'        ³³ ³                          ³  ³Move 1 from C to B³

³³N is 3               ³³ ³                          ÀÄÄ´Return            ³

³³Tower('A','B','C',2);ÃÙ ³                             ÆÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍµ

³³Move 3 from A to C   ÃÄÄÙ                        ÚÄÄÄÄ´F                 ³

³³Tower('B','C','A',2);ÃÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿³    ³FromPeg is 'B'    ³

À´Return               ÃÄ¿ÀÄ´FromPeg is 'B'       ³³    ³ToPeg is 'A'      ³

 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³  ³ToPeg is 'C'         ³³    ³AuxPeg is 'C'     ³

                         ³  ³AuxPeg is 'A'        ³³    ³N is 1            ³

                         ³  ³N is 2               ³³    ³Move 1 from B to A³    

                         ³  ³Tower('B','A','C',1);ÃÙ  ÚÄ´Return            ³

                         ³  ³Move 2 from B to C   ÃÄÄÄÙ ÆÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍµ

                         ³  ³Tower('A','C','B',1);ÃÄÄÄÄÄ´FromPeg is 'A'    ³

                         ÀÄÄ´Return               ÃÄÄÄÄ¿³ToPeg is 'C'      ³

                            ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ    ³³AuxPeg is 'B'     ³

                                                       ³³N is 1            ³

                                                       ³³Move 1 from A to C³

                                                       À´Return            ³

                                                        ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ 

____________________________________________________________________________

Comparison of Iteration and Recursive Procedures

     It is interesting to consider that function Tower in Figure 5.18 will solve the Tower of Hanoi Problem for any number of disks.  The three-disk problem results in a total of seven calls to function Tower and is solved by seven disk moves.  The five-disk problem would result in a total of thirty-one calls to function Tower and is solved in thirty-one moves.  In general, the number of moves required to solve the n-disk problem is

 2n - 1.  Since each procedure call requires the allocation and initialization of a local data area in memory, the computer time increases exponentially with the problem size.  For this reason, be careful about running this program with a value of N that is larger than ten. 

     The dramatic increase in processing time for larger towers is a function of this problem, not recursion.  However, in general if there are recursive and iterative solutions to the same problem, the recursive solution will require more time and space because of the extra procedure calls.  We will discuss algorithm efficiency later.

     Although recursion was not really needed to solve the simpler problems in this section, it was extremely useful in formulating an algorithm for Towers of Hanoi.  We will see that for certain problems, recursion leads naturally to solutions that are much easier to read and understand than their iterative counterparts.  In these cases, the benefits gained from increased clarity far outweigh the extra cost (in time and memory) of running a recursive program.

Exercises for Section 5.5

Self-check

1. Show the problems that are generated by attempting to solve

   the problem "Move two disks from peg A to peg C".  Answer the

   same question for the problem "Move three disks from peg A to

   peg C".  Draw a diagram similar to Figure 5.1.

2. How many moves are needed to solve the 6-disk problem?

Programing

1. Write a main program which reads in a data value for N (the

   number of disks) and calls function Tower to move N disks

   from A to B.

5.6  More Recursive Functions with Array Arguments

The process described in the previous sections can be followed to write other recursive functions.  This process involves identifying the stopping cases of a problem.  For the other cases, we must have a means of reducing the problem to one that is closer to a stopping case.

Case Study: Summing the Values in an Array

Problem

We want to write a recursive function that finds the sum of the values in an array X with subscripts 0, ... , N - 1.

Design Overview

The stopping case occurs when N is 0 -- the sum is X[0].  If N is not 0, then we must add X[N - 1] to the sum we get when we add the values in the subarray with subscripts 0, ... , N - 2.

Data Requirements

Problem Inputs

An array of integer values (int X[])

The number of elements in the array (int N)

Problem Outputs

The sum of the array values

Initial Algorithm

1.  if N is 1 then

      2.  The sum is X[0]

    else

      3.  Add X[N - 1] to the sum of values in the subarray with 

          subscripts 0..N - 2

Coding

     Function FindSum in Figure 5.20 implements this algorithm.  The result of calling FindSum for a small array (N is 3) is also shown.

Figure 5.20  Using Recursive Function FindSum

________________________________________________________________

#include <iostream.h>

int FindSum(int X[], int N)

//Finds sum of values in array X elements 0..N - 1.

//Pre : Array X is defined and N >= 0.

//Post: Returns sum of first N elements of X,

{

  int Sum;

  if (N == 0)

    Sum = 0;

  else

    Sum = X[N - 1] + FindSum(X, N - 1);

  return Sum;

}

void main()

//Tests function FindSum.

{

  const MaxIndex = 20;

  int Num;

  int X[MaxIndex];

  Num = 3;

  X[0] = 5;

  X[1] = 10;

  X[2] = -7;

  cout << "The array sum is " << FindSum(X, Num) << "\n";

}

The array sum is 8

________________________________________________________________

Testing

     Figure 5.21 shows a trace of the function call

        FindSum(X, 3); 

As before, the colored part of each activation frame executes before the next recursive function call, and each color arrow points to a new activation frame.  The grey part of each activation frame executes after the return from a recursive call, and each black arrow indicates the return point (the operator +) after a function execution.  The value returned is indicated alongside the arrow.  The value returned for the original call, FindSum(X, 3), is 8, and this value is printed.

Figure 4.21  Trace of FindSum(X, 3)

________________________________________________________________

      FindSum(X, 3)Ä¿

   ÚÄ>       ÚÄÄÄÄÄÄÙ

   ³        ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

   ³        ³X is X                       ³

   ³        ³N is 3                       ³      

 8 ³        ³FindSum = -7 + FindSum(X, 2);Ã¿     

   ÀÄÄÄÄÄÄÄÄ´Return        ³              ³³     

            ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³     

                           ³   ÚÄÄÄÄÄÄÄÄÄÄÄÙ     

                           ³  ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ 

                           ³  ³X is X                       ³ 

                           ³  ³N is 2                       ³ 

                        15 ³  ³FindSum = 10 + FindSum(X, 1);Ã¿

                           ÀÄÄ´Return        ³              ³³

                              ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³

                                             ³   ÚÄÄÄÄÄÄÄÄÄÄÄÙ

                                             ³ ÚÄÁÄÄÄÄÄÄÄÄÄÄÄ¿

                                             ³ ³X is X       ³

                                             ³ ³N is 1       ³

                                           5 ³ ³FindSum = 5; ³

                                             ÀÄ´Return       ³

                                               ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

________________________________________________________________

     Functions that return True (1) or False (0) values can also be written recursively.  The function result is determined by evaluating an logical expression containing a recursive call.  We will write recursive functions that search an array and compare two arrays. 

Example 4.7

Function Member in Figure 5.22 returns the value 1 (true) if the argument Target is in the array X with subscripts 0 to N; otherwise it returns the value 0 (false).  If N is 0 (the stopping case), the result is determined by comparing X[0] and Target.  If N is not 0 (the recursive step), then the result is 1 (true) if either X[N] is Target or Target occurs in the subarray with subscripts 0 to N - 1.  The recursive step is implemented as the assignment statement

   InArray = ((X[N] == Target) || Member(X, Target, N - 1));     

in Figure 5.22.

Figure 5.22  Recursive Function Member

________________________________________________________________

#include <iostream.h>

int Member(int X[], int Target, int N)

//Searches for Target in array X with subscripts 0..N.

//Pre : Target, N, and array X are defined; N >= 0.

//Post: Returns True (1) if Target is located in array X;

//      otherwise returns False (0).

{

  int InArray;

  if (N == 0)

    InArray = (X[0] == Target);

  else

    InArray = ((X[N] == Target) || Member(X, Target, N - 1));

  return InArray;

}

________________________________________________________________

     The function call Member(X, 10, 2) is traced in Figure 5.23 for the array X defined in Figure 5.20.  The value returned is 1 (true) since the expression (X[N] == Target) is true when N is 1 (the second activation frame).

Figure 5.23  Trace of Function Member

_______________________________________________________________________

     ÚÄ>Member(X, 10, 2)Ä¿

     ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

     ³  ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

     ³  ³X is X                                 ³

     ³  ³Target is 10                           ³

     ³  ³N is 2                                 ³

   1 ³  ³Member = (-7 == 10) || Member(X, 10, 2)ÃÄ¿

     ÀÄÄ´Return        ³                        ³ ³   

        ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³

                       ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

                       ³  ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

                       ³  ³X is X                                 ³

                       ³  ³Target is 10                           ³

                       ³  ³N is 1                                 ³

                     1 ³  ³Member = (10 == 10) || Member(X, 10, 1)ÃÄ¿

                       ÀÄÄ´Return         ³                       ³ ³

                          ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³

                                          ³   ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

                                          ³  ÚÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

                                          ³  ³X is X            ³

                                          ³  ³Target is 10      ³

                                          ³  ³N is 0            ³

                                        0 ³  ³Member = (5 == 10)³

                                          ÀÄÄ´Return            ³

                                             ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

_____________________________________________________________________

Example 4.8

The function Equal returns the value 1 (true) if two arrays, say X and Y, with subscripts 0 to N are the same (i.e. X[0] == Y[0], X[1] == Y[2], ... , X[N] == Y[N]).  This function (see Figure 5.24) looks similar to function Member.  For the stopping case, single-element arrays, the function result depends on whether or not X[0] == Y[0].  For larger arrays, the result is true (1) if X[N] == Y[N] and the subarrays with subscripts 0 to N - 1 are equal.

Figure 5.24  Recursive Function Equal

________________________________________________________________

#include <iostream.h>

int Equal(int X[], int Y[], int N)

//Compares arrays X and Y with elements 0..N.

//Pre : Arrays X and Y are defined; N >= 0.

//Post: Returns True (1) if arrays X and Y are equal;

//      otherwise returns False (0).

{

  int Equ;

  if (N == 0)

    Equ = (X[0] == Y[0]);

  else

    Equ = ((X[N] == Y[N]) && Equal(X, Y, N - 1));

  return Equ;

}

________________________________________________________________

Comparison of Iterative and Recursive Functions     

 It is interesting to consider the iterative version of function Member shown in Figure 5.25.  A for loop is needed to examine each array element.  Without recursion it is not possible to use the function call in an expression, so a local variable, Found, is needed to represent the result so far.  The final value of Found is used as the function result.

Figure 5.25  Iterative Function Member

________________________________________________________________

#include <iostream.h>

const True = 1;

const False = 0;

int Member(int X[], int Target, int N)

//Searches for Target in array X with subscripts 0..N.

//Pre : Target, N, and array X are defined; N >= 0.

//Post: Returns True (1) if Target is located in array X;

//      otherwise returns False (0).

{

  int Found;           //loop flag

  int I;               //loop control variable

  Found = False;

  for (I = 0; I <= N; I++)

    Found = ((X[I] == Target) || Found);

  return Found;

}

________________________________________________________________


We could certainly improve the implementation of function Member shown in Figure 5.25.  For example, we could make it more efficient by using a while loop and exiting from the loop when Found becomes True; however, the version shown in Figure 5.25 would still execute faster than the recursive version.

     Many people would argue that the recursive version of Member is aesthetically more pleasing.  It is certainly more compact (a single if statement).  Once you are accustomed to thinking recursively, the recursive form is somewhat easier to read and understand than the iterative form.

     Some programmers like to use recursion as a conceptual tool.  Once they have written the recursive form of a function or procedure, they can always translate it into an iterative version if run-time efficiency is a major concern.  

Case Study: Counting Cells in a Blob

The next problem is a good illustration of the power of recursion.  Its solution is relatively easy to write recursively; however, the problem would be much more difficult without using recursion.

Problem

We have a two-dimensional grid of cells, each of which may be empty or filled.  The filled cells that are connected form a blob.  There may be several blobs on the grid.  We would like a function that accepts as input the coordinates of a particular cell and returns the size of the blob containing the cell. 

     There are three blobs in the sample grid below.  If the function parameters represent the X and Y coordinates of a cell, the result of BlobCount(3, 4) is 5; the result of BlobCount(1, 2) is 2; the result of BlobCount(5, 5) is 0; the result of BlobCount(5, 1) is 4.

       5   * *     

       4     * * 

     Y 3       *   *

       2   *       *

       1   *   * *
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               X

Design Overview

Function BlobCount must test the cell specified by its arguments to see whether it is filled.  There are two stopping cases: the cell (X, Y) is not on the grid or the cell (X, Y) is empty;  in either case, the value returned by BlobCount is 0.  If the cell is on the grid and filled, then the value returned is 1 plus the size of the blobs containing each of its eight neighbors.   To avoid counting a filled cell more than once, we will mark it as empty once we have visited it.

Data Requirements

Problem Inputs

The grid 

The X and Y coordinates of the point being visited (int X, int Y)

Problem Outputs

The number of the cells in the blob containing point X, Y

Initial Algorithm

1.  if cell (X, Y) is not in the array then

      2.  Return a count of 0

    else if cell (X, Y) is empty then

      3.  Return a count of 0

    else

    {

      4.  Mark cell (X, Y) as empty

      5.  Add 1 and see whether the blob contains any of 

          the 8 neighbors of cell (X, Y)

    }

     Function BlobCount is shown in Figure 5.26, assuming the declarations below.  The constants MaxX and MaxY represent the largest X and Y coordinates, respectively.  Constants XSize and YSize are used to declare the array argument Grid large enough to accommodate coordinates of size MaxX or MaxY.  The constants Filled and Empty are used to mark the array cells as being occupied or not.

     const MaxX = 100;

     const MaxY = 100;

     const XSize = MaxX + 1;

     const YSize = MaxY + 1;

     const Filled = '*';

     const Empty = ' ';

Figure 4.26  Function BlobCount

________________________________________________________________

#include <iostream.h>

int Blob(char Grid[XSize][YSize], int X, int Y)

//Performs counting operation for BlobCount.

//Pre : Array Grid and point (X , Y) are defined.

//Post: Returns the size of the blob containing point (X, Y).

//      Resets the status of each cell in the blob to Empty.

{

  int Count;

  if ((X < 0) || (X > MaxX) || (Y < 0) || (Y > MaxY))

    Count = 0;                         //cell not in Grid

  else if (Grid[X][Y] == Empty)

    Count = 0;                         //cell is empty

  else

  {                                    //cell is filled

    Grid[X][Y] = Empty;

    Count = 1 + Blob(Grid, X - 1, Y + 1) +


    Blob(Grid, X, Y + 1) + Blob(Grid, X + 1, Y + 1) +


    Blob(Grid, X + 1, Y) + Blob(Grid, X + 1, Y - 1) +


    Blob(Grid, X, Y - 1) + Blob(Grid, X - 1, Y - 1) +


    Blob(Grid, X - 1, Y);

  }

 return Count;

}

int BlobCount (char Grid[XSize][YSize], int X, int Y)

//Counts number of filled cells in blob containing

//point (X, Y).

//Pre : Array Grid and point (X, Y) are defined.

//Post: Returns size of blob containing the point (X, Y).

//Calls: Blob to perform counting operation.

{

 int Count;

 Count= Blob(Grid, X, Y);

 return Count;

}

________________________________________________________________

     Function Blob in Figure 5.26 implements the counting algorithm; function BlobCount simply calls the recursive function

Blob, passing on its arguments, and returns the count computed by function Blob as its own result.  The reason we used two functions instead of one was to protect the actual array from being modified when filled cells are reset to empty by function Blob.  We will come back to this point shortly.

     If the cell being visited is off the grid or is empty, a value of zero will be returned immediately.  Otherwise, the recursive step executes causing function Blob to call itself eight times; each time a different neighbor of the current cell is visited.  The cells are visited in a clockwise manner, starting with the neighbor above and to the left.  The function result is defined as the sum of all values returned from these recursive calls plus 1 (for the current cell).     

     The sequence of operations performed in function Blob is very important.  The if statement tests whether the cell (X, Y) is on the grid before testing  whether (X, Y) is empty.  If the order were reversed, the run-time error "out of bounds" would occur whenever (X, Y) was off the grid. 

     Also, the recursive step resets Grid[X, Y] to Empty before visiting the neighbors of point (X, Y).  If this were not done first, then cell (X, Y) would be counted more than once since it is a neighbor of all its neighbors.  A worse problem is that the recursion would not terminate.  When each neighbor of the current cell is visited, Blob is called again with the coordinates of the current cell as arguments.  If the current cell is Empty, an immediate return occurs.  If the current cell is still Filled, then the recursive step would be executed erroneously.  Eventually the program will run out of time or memory space; the latter is often indicated by a "stack overflow" message.

     A side-effect of the execution of function Blob is that all cells that are part of the blob being processed are reset to Empty.  This is unavoidable since arrays are always passed by reference in C++.  If we want to preserve the original contents of Grid we need to have BlobCount make a copy of Grid before calling function Blob and pass the copy to Blob.

Exercises for Section 5.6

Self-check

1. Trace the execution of recursive function Equal for the three

   element arrays X (element values 1, 15, 10) and Y (element

   values 1, 15, 7).  Write out completely an equivalent Boolean

   expression which shows the values that Equ is assigned through

   all three recursive calls.  Spell out all the values that are

   being compared.

2. Trace the execution of function BlobCount for the coordinate

   pairs (1, 1) and (1, 2) in the sample grid.

3. Is the order of the two tests performed in function BlobCount

   critical?  What happens if we reverse them or combine them

   into a single condition?

Programming

1. Write a recursive function that finds the product of the

   elements in an array X of N elements.

2. Write a recursive function that finds the index of the

   smallest element in an array.  

3. Write the recursive function FindMin that finds the smallest

   value in an integer array X with subscripts 0 to N.

5.7  Backtracking

In this section we will consider a technique known as chronological backtracking or just backtracking.  Backtracking is a search technique which is useful in solving problems which involve the use of systematic trial and error to construct a solutions.  To illustrate backtracking consider the task of finding a path through a maze.

     One approach to finding a path through a maze is to start down a path and follow as far as we can. If we find the end of the maze then we are finished.  If we find a dead end instead, then we need to retrace our steps (or backtrack) until we find an opening in the walls and try one of the alternative paths we have not tried yet.  What makes backtracking different from randomly guessing, is that we are systematically eliminating alternative paths as we try them.  This means that we will not try exactly the same path more than once and that eventually we will try every possible path.  

     Problems which are solvable using backtracking several features in common with our maze problem.  The solution to these problems can be described as a set of choices made by some arbitrary method.  If at some point in time, it turns out that a solution is not possible using the current set of choices, the most recent choice made is identified and removed.  If a previously untried alternative exists for that choice, it is added to the set of choices, and search continues.  If no previously untired alternative exists, then next most recent choice is examined.  This process continues until either a choice with an untried alternative is found and forward progress can continue or no more choices remain to try.  If a solution to the problem exists then backtracking will find it, though it may take a very long time to do so.

Case Study: Finding a Path Through a Maze 

It is very natural to want to implement a backtracking algorithm recursively.  We will now describe a recursive algorithm which uses backtracking to find a path through a maze.

Problem

Given a maze and an initial starting location, find a path to the exit location if one exists.  Every maze has the same exit location (the lower righthand corner).  Only vertical and horizontal moves may be used.  Diagonal moves are not allowed.  If we reach a dead end, we must backtrack to find a new path to try.  We can not simply jump to a new maze location and try again.

     We will assume that our maze is stored in a two dimensional array of characters as shown in Figure 5.27.  A blank character is used to mark an open space and the character 'X' is used to mark a wall location.  As we visit each empty location we will mark it with the character '*'.  When we backtrack we will replace the '*'  with a blank.  In Figure 5.27, we show a partial path for Maze[0, 0], to Maze[0, 1], to Maze[1, 1], to Maze[1, 2].

    0   1   2   3   4   5   6   7 

  ÚÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄÂÄÄÄ¿

0 ³ * ³ * ³ X ³   ³ X ³ X ³   ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

1 ³ X ³ * ³ X ³   ³ X ³   ³   ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

2 ³   ³ * ³   ³   ³   ³   ³ X ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

3 ³   ³ X ³ X ³ X ³   ³ X ³   ³   ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

4 ³   ³ X ³   ³   ³   ³ X ³   ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

5 ³   ³ X ³   ³ X ³   ³   ³   ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

6 ³   ³ X ³   ³ X ³ X ³ X ³   ³ X ³

  ÃÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ´

7 ³ X ³ X ³ X ³ X ³ X ³ X ³   ³   ³Exit

  ÀÄÄÄÁÄÄÄÁÄÄÄÁÄÄÄÁÄÄÄÁÄÄÄÁÄÄÄÁÄÄÄÙ

Design Overview

Function Solve must test the current location specified by its input parameters to see if the path has reached the maze exit or not.  There are four stopping cases:

  - Maze[Row, Col] is exit location;

  - Maze[Row, Col] is not part of the maze, meaning the path

    includes an illegal move;

  - Position Maze[Row, Col] has already been visited;

  - and finally after trying each alternative path (down, right,

    up, left) from the current position without reaching the exit

    and backtrack.

     If the position Maze[Row, Col] is not the maze exit and is a legal position within the maze then we try to find a path through each of the four adjacent Maze locations unless the exit is located first.

Data Requirements

Problem Inputs

The maze

The row and column location of the current maze position

      (int Row, int Col)

Problem Outputs

The maze with a path marked - if one was found

Program flag indicating whether path found or not

      (int Success)

Initial Algorithm

1. if Maze[Row, Col] is exit

   {

     2. Mark Maze[Row, Col] as visited

     3. Stopping case - set Success to True

   }

   else if Maze[Row, Col] is not part of the maze

     4. Stopping case - set Success to False

   else if Maze[Row, Col] has not been visited

   {

     5. Mark Maze[Row, Col] as visited

     6. if not Success and we can move down

          7. Move down and continue this path

     8. if not Success and we can move right

          9. Move right and continue this path

    10. if not Success and we can move up

         11. Move up and continue this path

    12. if not Success and we can move left

         13. Move left and continue this path

    14. if not Success 

         15. Stop & Backtrack - Mark Maze[Row, Col] not visited

   }

     Consider what happens in the maze shown in Figure 5.27 when Row is 2 and Col is 1.  Maze[2, 1] is marked as visited (Step 5).  Step 6 fails so we try Step 8.  The condition for Step 8 is true, so we attempt to continue the path through position Maze[2, 2] (Step 9).  Eventually, we will reach the exit point (Maze[7, 7]) through this path, so we will never have to remove the '*' at Maze[2, 2] or Maze[2, 1].

     When Row is 2 and Col is 1, if Maze[2, 2] contained an X instead of a blank, we would be forced to continue the path to the left down through point Maze[2, 0].  From Maze[2, 0], the only choice available would be to continue down column 0 through Maze[3, 0], Maze[4, 0], and so on.  We would eventually reach a dead end and would have to backtrack, removing the * from Maze[6,0], Maze[5, 0], and so on.  Because there would be no untried alternatives at any point along the path we are backing up, we would remove all the stars and return to the entry point of the maze (Maze[0, 0]).

     Function Solve is shown in Figure 5.27, assuming the declarations below.  The array Maze has element values ' ' or 'X' to represent Open spaces or a Wall locations respectively.  The constant MaxSize represents the largest row or column subscript while MaxSize is used in the declaration of array Maze.

   const MazeSize = 8;

   const MaxIndex = MazeSize - 1;

   const Open = ' ';

   const Wall = 'X';

   const True = 1;

   const False = 0;

Figure 5.27  Function Solve

________________________________________________________________

#include <iostream.h>

void Solve(char Maze[MazeSize][MazeSize],


   int Row, int Col, int& Success)

//Finds path through Maze if one exits.

//Pre : Maze, Row, and Col are defined.

//Post: If there is a path from [1,1] to [Row, Col], mark

//      it in Maze and set Success to True; otherwise do

//      nothing and set Success to False.

{

  if ((Row == MaxIndex) && (Col == MaxIndex))

  {

    //Stopping case, we're there! Mark it visited}

    Maze[Row][Col] = '*';

    Success = True;          //maze solved

  }

  else if ((Row < 0) || (Row > MaxIndex) ||


   (Col < 0) || (Col > MaxIndex))

    //Stopping case, ran off the edge of the Maze

    Success = False;

  else if (Maze[Row][Col] == Open)

  {

    //We're on the path, look for a path to this point

    //Tentatively mark this point as visited

    Maze[Row][Col] = '*';

    //Try down

    if (!Success && (Maze[Row + 1][Col] == Open))

      Solve(Maze, Row + 1, Col, Success);

    //Try right

    if (!Success && (Maze[Row][Col + 1] == Open))

      Solve(Maze, Row, Col + 1, Success);

    //Try up

    if (!Success && (Maze[Row - 1][Col] == Open))

      Solve(Maze, Row - 1, Col, Success);

    //Try left

    if (!Success && (Maze[Row][Col - 1] == Open))

      Solve(Maze, Row, Col - 1, Success);

    //If dead end was reached take back the move.

    if (!Success)

      Maze[Row][Col] = Open;

  }

}

________________________________________________________________

     The statements          

          Success = False;

          Solve(Maze, 0, 0, Success);

would need to appear in a client program making use of function Solve to find a path in array Maze.  Function Solve begins by checking two of the stopping cases, the case where the exit is found and the case where the subscripts Row and Col for positions outside the maze.  Success is assigned True (1) if the exit is found and False (0) if Row and Col contain bad subscript values.

     The next step is to check to see if Maze[Row, Col] is an open position.  If it is, then tentatively move there and store the character '*' there to mark it as visited.  Now each array location adjacent to Maze[Row, Col] is explored one at a time as long as Success contains the value False (or 0, meaning the exit has not already been found).  Checking each adjacent array location involves a recursive call to function Solve with the subscripts of the array location being passed to function Solve.

     If Success contains the value True (1) after the four if statements have been executed, then the '*' is left as the value of position Maze[Row, Col].  If Success is False (0) after checking all four positions  we will withdraw our move to Maze[Row, Col] by storing a blank at that position.  In either case, execution of function Solve terminates and control is returned to the caller.  If the caller is the top-level module the final value of Success will indicate whether or not Maze contains a marked path from the starting position to the exit at Maze[MaxIndex, MaxIndex].

Exercises for Section 5.7

Self-check

1. Trace the execution of function Solve if it passed the maze 

   shown below, with starting position Maze[0, 0].  You may

   assume that the value of MazeSize is 3.

        0  1  2

     0      

     1     X

     2  X  X   

2. What be the consequences of replacing the five independent

   if statements in function Solve with the nested if statement

   shown below?

     if (!Success && (Maze[Row + 1][Col] == Open))

       Solve(Maze, Row + 1, Col, Success);

     else if (!Success && (Maze[Row][Col + 1] == Open))

       Solve(Maze, Row, Col + 1, Success);

     else if (!Success && (Maze[Row - 1][Col] == Open))

       Solve(Maze, Row - 1, Col, Success);

     else if (!Success && (Maze[Row][Col - 1] == Open))

       Solve(Maze, Row, Col - 1, Success);

     else if (!Success)

       Maze[Row][Col] = Open;

Programming

1. Write a driver program to test procedure Solve (Figure 5.27).

5.8  Debugging Recursive Algorithms

You can use the Turbo C++ debugger to aid in debugging a recursive function.  If you place an argument in the Watch window, you can see how that argument's value changes during successive calls to the recursive function.  If your function's local variables are in a Watch window, you can observe their values as you single-step through the function using the F7 function key.


The Call Stack window can help trace the execution of a recursive function.  Each time a function is called, the Turbo C++ debugger remembers the call by placing a record on the Call Stack.  This record contains the function name along with the values of the actual arguments used in the function call.  When the function is exited, its record is removed from the Call Stack.  Whenever execution pauses during a debugging session, you can view the contents of the Call Stack by pressing Ctrl-F3.  This opens a window similar to that shown in Figure 5.28.

               Figure 4.28 Call Stack Window


The Call Stack window contains a list of the calls to the currently active functions.  If this list is too long to fit on the screen, use the mouse or the F6 key to move the Call Stack window and then use the mouse or the arrow keys to scroll through the list of calls. 


You can also determine the statement currently executing in any of the active calls.  Normally, the most recent call is highlighted in the Call Stack window, and its currently executing statement is highlighted in the Edit window.  If you select another call in the Call Stack window (using the arrow keys or the mouse), the Call Stack window will disappear and the Edit window cursor will be positioned at the statement currently executing that call.  You can bring back the Call Stack window by pressing Ctrl-F3 again.

5.9 Common Programming Errors

The most common problem with a recursive function is that it may  not terminate properly.  For example, if the terminating condition is not correct or incomplete, then the function may call itself indefinitely or until all available memory is used up.  Normally, a "stack overflow" run-time error is an indicator that a recursive function is not terminating.  Make sure that you identify all stopping cases and provide a terminating condition for each one.  Also be sure that each recursive step leads to a situation that is closer to a stopping case and that repeated recursive calls will eventually lead to stopping cases only.

     The use of large arrays or other data structures as local variables can quickly consume all available memory.  Unless absolutely essential for data protection, arrays should be passed as variable parameters.  Any expression such as N - 1 must be passed by value when used as function arguments.

     Sometimes it is difficult to observe the result of a recursive procedure execution.  If each recursive call generates a large number of output lines and there are many recursive calls, the output will scroll down the screen more quickly than it can be read.  On most systems it is possible to stop the screen temporarily by pressing a control character sequence (e.g. Control S).  If this cannot be done, it is still possible to cause your output to stop temporarily by printing a prompting message followed by a cin >> NextChar; operation.  Your program will resume execution when you enter a data character.

Chapter Review

     Many examples of recursive functions were provided in this chapter.  Hopefully, studying them has given you some appreciation of the power of recursion as a problem solving and programming tool and has provided you with valuable insight regarding its use.  It may take some time to feel comfortable thinking in this new way about programming, but it is certainly worth the effort.

Quick-check Exercises

1. Explain the use of a stack in recursion.

2. Which is generally more efficient, recursion or iteration?

3. Why would a programmer conceptualize the problem solution

   using recursion and implement it using iteration?

4. Explain the problem with large local data structures in

   recursion?

5. In a recursive problem involving N items, why must N be a

   value parameter?

6. What causes a stack overflow error?

7. What can you say about a recursive algorithm that has the

   following form? 

      if condition then

        Perform recursive step.

8. What does the following recursive function do?

    int Mystery (int X[], int N)

    {

      int Temp;

      if (N == 0)

        Mystery = X[0]

      else

      {

        Temp =  Mystery(X, N - 1);

         if (X[N] > Temp)

           Mystery = X[N]

         else

           Mystery = Temp;

      }

    }

Answers to Quick-check Exercises

1. The stack is used to hold all parameter and local variable

   values and the return point for each execution of a recursive

   procedure.

2. Iteration is generally more efficient than recursion.

3. When its solution is much easier to conceptualize using

   recursion but its implementation would be too inefficient.

4. A copy of the array must be pushed onto the stack each time a

   call occurs.  All available stack memory could be exhausted.

5. If N were an argument passed by value, its address would be

   saved on the stack, not its value, so it would not be possible

   to retain a different value for each call.

6. Too many recursive calls.

7. Nothing is done when the stopping case is reached.

8. Returns the largest value in array X.

Review Questions

1. Explain the nature of a recursive problem.

2. Discuss the efficiency of recursive functions.

3. Differentiate between stopping cases and a terminating

   condition.

4. Write a C++ function that prints the accumulating sum of

   ordinal values corresponding to each character in a string.

   For example if the string value is 'a boy', the first value

   printed would be the ordinal number of a, then the sum of

   ordinals for a and the space character, then the sum of

   ordinals for a, space, b, and so on.  

5. Write a C++ function that returns the sum of ordinal

   values corresponding to the characters stored in a string;

   however, this time exclude any space characters from the sum.

6. The expression for computing C(n,r), the number of

   combinations of n items taken r at a time is

                 n!

     c(n,r) = --------

              r!(n-r)!

    Write a function for computing c(n,r) given that n! is the

    factorial of n.

Programming Projects

1. Write a function that reads each row of an array as a string

   and converts it to a row of Grid to be processed by function

   BlobCount (see Figure 5.26).  The first character of row 1

   corresponds to Grid[1,1], the second character to Grid[1,2],

   etc.  Set the element value to Empty if the character is

   blank; otherwise, set it to Filled.  The number of rows in the

   array should be read first.  Use this function in a program

   that reads in cell coordinates and prints the number of cells

   in the blob containing each coordinate pair.

2. A palindrome consists of a word that is spelled exactly the

   same when the letters are reversed, for example, such words as

   Level, Deed, and Mom.  Write a recursive function that returns

   the value 1 (true) if a word, passed as a parameter, is a

   palindrome and 0 (false otherwise).

3. Write a recursive function that returns the value of the

   following recursive definition:

     F(X,Y) = X - Y                      if X or Y < 0

     F(X,Y) = F(X - 1, Y) + F(X, Y - 1)  otherwise

4. Write a recursive function that lists all of the pairs of

    subsets for a given set of letters.  For example:

     ['A', 'C', 'E', 'G'] => ['A', 'C'], ['A', 'E'], ['A', 'G'],

                             ['C', 'E'], ['C', 'G'], ['E', 'G']

5. One method of solving a continuous numerical function for a

   root implements a technique similar to the binary search.

   Given a numerical function, defined as f(X), and two values

   of X which are known to bracket one of the roots, an

   approximation to this root can be determined through a method

   of repeated division of this bracket.

   For a set of values of X to bracket a root the value of the

   function for one X must negative and the other must be

   positive as illustrated in the diagram below which plots f(X)

   for values of X between X1 and X2.

                |                              .

                |                              

                |

                |

                |

                |     X1                       X2

        f(X)=0--|-------------.--------------------- X

                |               Root desired

                |     .

              f(X)    

       The algorithm requires that the midpoint between the left    X and the right X be evaluated in the function and if it

   equals zero the root is found; otherwise, the left X (X1) or

   right X (X2) is set to this midpoint.  To determine whether to

   replace either X1 or X2, the sign of the midpoint is compared

   against the signs of the values of f(X1) and f(X2).  The

   midpoint replaces the X (X1 or X2) whose function value has

   the same sign as the function value at the midpoint.

       This routine can be written recursively.  The terminating

   conditions are true when either the midpoint evaluated in the

   function is zero or the absolute value of the left minus the

   right X is less than some small predetermined value (e.g.

   0.0005).  If the second condition occurs then the root is said

   to be approximately equal to the midpoint of the last set of

   left and right X's.

6. We can use a merge technique to sort two arrays.  The

   mergesort begins by taking adjacent pairs of array values and

   ordering the values in each pair.  It then forms groups of 4

   elements by merging adjacent pairs (first pair with second

   pair, third pair with fourth pair, etc.) into another array.     It then takes adjacent groups of 4 elements from this new

   array and merges them back into the original array as groups

   of 8, etc.  The process terminates when a single group is

   formed that has the same number of elements as the array.  The

   mergesort is illustrated in Figure 5.29 for an array with 8

   elements.  Write a MergeSort procedure.

     Fig. 4.29  Illustration of MergeSort
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7. The Eight Queens problem is a famous chess problem that has as

   its goal the placement of eight queens on a single chessboard

   so that no queen will be able to attack any other queen.  A

   queen may move any number of squares vertically, horizontally,

   or diagonally.  A chessboard can be represented by a two-

   dimensional array having 8 rows and 8 columns.  Write a

   program that contains a recursive routine that solves the

   Eight Queen problem.

   Hint: Arbitrarily choose the location for the first queen,

   then attempt to place the second queen in the next available

   open row.  This process continues as long as its possible to

   place queens.  If a dead end is reached, the last placed queen

   is removed and repositioned (by backtracking to the previous

   activation of the recursive routine and attempting to place

   the queen in a different location).

